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1. INTRODUCTION 

1.1 Background 

1.1.1 Miombo landscape of southern Africa 

General features and distribution 

The majority of sub-Saharan Africa is dominated by a variety of dry forests and 

woodlands as the natural vegetation, ranging from semi-arid to sub-humid types 

(Chidumayo & Marunda 2010). The most characteristic of these types, occurring 

between the tropical rainforests of Congo basin and the grasslands of the 

southernmost part of the continent (White 1983), is miombo woodland. It is 

sometimes referred to as Zambezian woodland, but most often simply as miombo. 

 

Generally, miombo woodlands are closed or partially closed, deciduous savanna-like 

tropical dry woodland formations with slight to full seasonal behavior (Campbell et 

al. 1996; White 1983). Miombo can be classified either as forest, woodland or 

savanna, depending on the context and definition applied. This problem is coherently 

discussed by Campbell et al. (1996), and results from the heterogenic vegetation 

structure of trees, shrubs and grasses overlapping with multiple definitions that is a 

typical feature of miombo. One of the latest classifications is by Timberlake et al. 

(2010), who classify miombo as “warm mesic dry woodlands”. Miombo represents a 

climax vegetation type, even though lots of it has been modified by presence of 

shifting cultivation and anthropogenic fires (White 1983).  

 

White (1983) has presented the most recent and arguably the most commonly 

referred spatial distribution of the miombo woodlands based on floristic attributes. 

The illustration in Figure 1 is based on his mapping. The miombo region is estimated 

to cover 2.4–2.7 million km
2
 in seven different countries of southern Africa (Dewees 

et al. 2011; Frost 1996), making it perhaps the most widespread dry forest and 

woodland formation even in global terms (Frost 1996). However, it has been noted 

(Dewees et al. 2011) that the estimated area represents the botanical region of 

miombo woodlands rather than the actual woodland distribution, which has been 

drastically reduced by processes of forest degradation and land use conversion. 
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Figure 1. Distribution of miombo woodlands. The figure is based on presentation by White (1983). 

Source of the picture: [http://www.mpingoconservation.org/index.php?id=60] 

 

 

The areas on which miombo generally appear have mean annual rainfall ranging 

from 650 to 1400 mm (Campbell et al. 1996). The climate is strongly seasonal, with 

the annual rainfall occurring either predominantly or almost completely during a 

rainy season of 4–5 months (Timberlake et al. 2010; White 1983). The related soils 

are of old geologic origin and hence nutrient-poor (Campbell et al. 1996) and acid 

(Timberlake et al. 2010; Frost 1996), and typically also well drained (Frost 1996; 

White 1983).  

 

Biodiversity 

Miombo woodlands form the majority, circa 70 % (Ribeiro et al. 2008a), of the 

Zambezian regional center of endemism as it is defined by White (1983). It is also 

referred to as the Zambezian phytoregion. The area is the largest of the seven 

regional centers of endemism White (1983) presents for mainland Africa, and 

according to his estimate, houses the highest total number of plant species and a high 

level of species endemism in Africa as well (8500 and 54 %, respectively). Even 

though these figures have later been challenged by Linder et al. (2005) presenting 
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significantly smaller estimates (1725 and 22 %), the Zambezian phytoregion stands 

among the two most important areas in Africa in terms of plant species count and 

endemism in both studies.  

 

As the Zambezian phytoregion as a whole, also miombo woodlands are considered to 

house significant plant biodiversity (Dewees et al. 2011; Frost 1996). Yet the 

richness of species is not distributed evenly. White (1983) divided miombo 

woodlands further into two classes, the occurrence of which is related to the mean 

annual rainfall: floristically rich wetter miombo and floristically poor drier miombo. 

Areas featuring the former typically receive annual rainfall above 1000 mm, whereas 

areas featuring the latter typically remain below this figure.  

 

Despite the total floristic biodiversity being high on miombo, the relative diversity of 

woody species and tree species especially does not reach equally high levels. 

Biodiversity indices for woody plants both high (Giliba et al. 2011) and mediocre 

(Williams et al. 2008; Isango 2007) have been recorded. The tree species 

composition is dominated by only three genera with a limited set of species: 

Brachystegia, Julbernardia and Isoberlinia (White 1983). The most dominant genus 

throughout the miombo is Brachystegia alone or accompanied by either of the two 

latter (Frost 1996; White 1983). Many of the Brachystegia species are called 

“miombo” in the local languages, hence the name miombo woodlands. 

 

While all of the three dominant genera are utmost characteristic for miombo 

woodlands, they are rarely encountered outside of them (White 1983). This makes a 

clear distinctive feature of miombo, all the way to the physical appearance (Campbell 

et al. 1996; White 1983). A Brachystegia tree of typical form is shown in Figure 2. A 

total of 19 species of Brachystegia appear as miombo dominants, however unevenly 

distributed across the miombo ecoregion (White 1983). The other two genera are 

only represented by Julbernardia globiflora, Julbernardia paniculata and Isoberlinia 

angolensis as dominant species (Frost 1996, White 1983). Also a number of other 

tree species are frequently encountered alongside the dominant ones. Species of 

Uapaca are often even featured as dominants on shallow soils and secondary forest 

areas of miombo (White 1983).  
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Figure 2. A sole Brachystegia sp. by the border of a cleared miombo stand, photographed close to the 

community of Ligogolo in Muembe district, Niassa province, Mozambique. Photo: Arttu Pienimäki. 

 

 

Structure and fire dynamics 

Various studies conducted in Tanzania recorded a clear reverse J shaped diameter 

breast height (DBH) distribution on miombo woodlands, repeatedly across all 

measurement sites (Kashindye et al. 2013; Shirima et al. 2011; Isango 2007; Backéus 

et al. 2006). A generally small proportion of the trees measured in these studies 

exceeded DBH of 50 cm. The few largest individuals though had a DBH of 70–80 

cm, or even 90 cm (Backéus et al. 2006). Ribeiro et al. (2013) derived similar results 

from Niassa Reserve in northern Mozambique, excluding the presence of remarkably 

large trees. They found 69 % of the individual trees belonging to the DBH group of 

5–15 cm, while trees with a DBH of over 45 cm accounted for only 0.55 % of the 

stem count. The results demonstrate presence of a wide tree size distribution on 

miombo woodlands, as typical for savanna-like ecosystems. The tree diameter 

growth mainly takes place during the rainy season (Elifuraha 2008).  
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The stem densities reported for miombo vary widely, since the figures related to J 

shaped DBH distributions are sensitive to the minimum definition of a tree (height 

and DBH requirements). Shirima et al. (2011) had a relatively high minimum 

definition of 10 cm DBH, which resulted in densities of 281–382 stems per hectare. 

This gives an idea about the density of larger trees on miombo. A better overall 

density estimator is basal area (BA). Frost (1996) suggests that most of the mature 

miombo woodland stands have a BA ranging between 7–19 m
2
 ha

-1
, which is 

supported e.g. by results from Kalaba et al. (2013b), Shirima et al. (2011) and 

Backéus et al. (2006). Lower minimum BA values have been recorded as well (e.g. 

Williams et al. 2008), but Backéus et al. (2006) note that their occurrence is most 

typically related to wood harvesting by humans. 

 

Trees of miombo woodland demonstrate a relatively limited height. Stands generally 

achieve a dominant height of 10–20 m (White 1983). Heights over 15 m are reached 

on wetter miombo, while heights on drier miombo remain under 15 m (Frost 1996). 

Certain species of Brachystegia have been recorded to reach a height of 30 m, 

however under special conditions with the sites probably representing a vegetation 

type more productive than miombo (White 1983). 

 

Shrub layer and herbaceous vegetation layer demonstrate a wide variety of structural 

compositions on miombo, the former being typically discontinuous and the latter 

being continuous under the trees but varying in density (Campbell et al. 1996; Frost 

et al. 1996). The composition of herbaceous vegetation is greatly affected by fire 

among other things (Furley et al. 2008). 

 

It is shown by Sankaran et al. (2005) that African savanna ecosystems receiving 

annual precipitation of 650 mm or more have a potential to develop into closed 

canopy stands, unless the tree cover is reduced by disturbances. The precipitation 

figure applies to miombo woodlands exactly. Indeed, at least two major natural 

disturbance factors are recognized on miombo: fire and elephants (Ribeiro et al. 

2008b; Mapaure & Campbell 2002; Frost 1996). 

 

Where elephants are nowadays widely suppressed to nature reserves, fire is 

considered as a fixed feature of the miombo landscape (Campbell et al. 1996). It is 
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also evident that the present day fire intensity on miombo region is significantly 

increased due fires of anthropogenic origin (Ryan & Williams 2011; Timberlake et 

al. 2010). Burning experiments have showed that the species diversity on miombo is 

barely influenced by fire occurrence at least on short terms, indicating adaptation in 

the evolutionary traits of the plants (Furley et al. 2008). However, significant effects 

on vegetation and stand structure have been recorded. These occur as biomass 

removal and tree kill by fire, with especially high kill rates on small trees (Ryan & 

Williams 2011; Furley et al. 2008).  

 

1.1.2 Carbon stocks of miombo landscape 

The global context 

Dixon et al. (1994) have estimated the contribution of forest ecosystems to the global 

carbon pool. According to them, the forests of the world carry a total of about 1150 

Pg of carbon, stored in vegetation and soils. It is further estimated in their study that 

10 % of the global total stock and 15 % of the vegetation stock alone are situated in 

Africa. Gaston et al. (1998) present a more detailed forest carbon stock distribution 

exclusively for Africa. They estimate total forest, savanna and grassland C stocks for 

each of the African countries. Given the complexity of fitting miombo woodlands in 

any of those three classes by definition, the total figure for miombo woodlands alone 

is not calculable. However, the total C stock sum of five countries with a major 

miombo cover (Angola, Mozambique, Tanzania, Zambia and Zimbabwe; Figure 1) is 

circa 4.7 Pg. How much miombo accounts for this total figure remains without 

proper estimate, but since some of these countries also include tropical evergreen 

forests (White 1983) with generally higher C stock density than miombo (Lewis et 

al. 2009), a conservative approach should be applied.  

 

Presented estimates for carbon stocks aboveground 

It is mainly the wide distribution of miombo woodlands rather than the vegetation 

carbon stock density that makes miombo woodlands significant in the global carbon 

cycle. Various site-specific estimates of miombo C stocks per area unit have been 

made prior to this study. The most studied C sub-stock on miombo is arguably 

vegetation aboveground carbon, with trees representing the most significant 
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component. It is typically estimated by applying allometric equations based on 

narrow destructive sampling to wider inventory data. 

 

Frost (1996) demonstrates a positive correlation between mean annual rainfall and 

aboveground biomass (BM) of miombo. His aboveground BM suggestion for drier 

miombo woodlands and wetter miombo woodlands is 55 Mg ha
-1

 and 90 Mg ha
-1

 

respectively. Assuming C content of 0.47 for BM (IPCC 2006), the figures 

respectively stand for 26 Mg ha
-1

 and 42 Mg ha
-1

 in terms of carbon.  

 

A group of more recent studies that mostly measured relatively undisturbed miombo 

woodlands provide estimates of comparable magnitude for the aboveground C 

stocks. They are presented in Table 1. Also an older estimate by Chidumayo (1990) 

is included. Notably many of the mean stocks provided remain lower than the 

averages estimated by Frost (1996).  

 

Timberlake et al. (2010) modeled tree aboveground biomass for Zambezian 

woodland (miombo) based on a wide set of BA results. Their estimate is 88–97 Mg 

ha
-1

, which converts into 41–46 Mg ha
-1

 in terms of carbon (IPCC 2006). These 

figures again are notably higher than majority of the ones presented in Table 1. On 

the other hand, some single observations from those have very high values. This 

speaks for spatial heterogeneity in C stocks of miombo woodlands.  The wide 

distribution of results may reflect the difference between wetter miombo and drier 

miombo as suggested by Frost (1996), or presence of sample plots with miombo 

degradation by natural or anthropogenic factors.  

 

It is not uncommon that miombo stands are degraded to some extent by the factors 

mentioned above. It is important to notice that these degraded forests represent an 

increasing share of the miombo woodlands (Dewees et al. 2011), and that various 

studies include measurements on them. For example the study by Williams et al. 

(2008) addressed C stocks on a number of re-growing plots of secondary miombo in 

addition to C stocks on a protection area (figures given in Table 1 considering the 

latter). The mean aboveground C stocks in these cases have generally lower values 

than undisturbed miombo. 
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Table 1. Carbon stocks recorded for miombo woodlands according to other studies. All figures are 

given as Mg ha
-1

. Only the C stock of woody vegetation, primarily trees, is included. 
*
 Figures 

converted from biomass assuming C content of 0.47 (IPCC 2006). 

            

Mean S.D. Min Max Study site Reference 

19.0 8.0 4.3 33.4 Mozambique; Sofala province Williams et al. 2008 

20.5 3.3 
  

Tanzania Chamshama et al. 2004
*
 

21.2 1.4 1.9 60.9 Mozambique; Sofala province Ryan et al. 2011 

21.7  8.4 42.2 Mozambique; Sofala province Woollen et al. 2012 

22.0 4.6 16.9 30.7 Mozambique; Sofala province Ryan & Williams 2011 

23.3 9.8 13.5 29.8 Tanzania Shirima et al. 2011 

26.48 9.38 
  

Mozambique; Manica province Sitoe et al. 2009 

29.88 13.07 10.0 79.7 Mozambique; Niassa province Ribeiro et al. 2013 

37.2 1.3 
  

Tanzania Kashindye et al. 2013
*
 

39.6 1.5 28.7 52.8 Zambia Kalaba et al. 2013b 

41.9 6.4     Zambia Chidumayo, 1990
*
 

       

 

Ribeiro et al. (2008a) approached the matter by dividing miombo into categories 

defined by tree crown cover in their study based on remote sensing data from Niassa 

Reserve, Mozambique. The study area is known to include loss of trees caused by 

anthropogenic fires and herds of elephants (Ribeiro et al. 2008b). The group resulted 

in three different miombo classes with respective C stocks as follows: high density 

woodlands 35 Mg ha
-1

, medium density woodlands 19.5 Mg ha
-1

 and low density 

woodlands 10.5 Mg ha
-1

.  

 

The other aboveground C sub-stocks on miombo, alive or dead, have not been 

studied to equal extent but their contribution to the total C stock is evidently also 

very limited. Herbaceous vegetation generally makes up 2–5 % of the total 

aboveground BM (Frost 1996). For the respective C stock, values ranging between 

0.5–2.0 Mg ha
-1

 have been reported (Ribeiro et al. 2013; Woollen et al. 2012; 

Shirima et al. 2011; Sitoe et al. 2009; Chidumayo & Kwibisa 2003). Litterfall has 

been measured to add 0–2 Mg ha
-1

 to the total C stock (Ribeiro et al. 2013; Woollen 

et al. 2012; Frost 1996).  
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When it comes to dead wood C stocks, only two estimates were found. One (Sitoe et 

al. 2009) valued circa 0.7 Mg ha
-1

 while the other (Ribeiro et al. 2013) valued  so 

close to zero that it was practically negligible. Yet there are factors with potential of 

producing dead wood on miombo. Fire is common, and the most intense fires are 

recorded to be able to kill up to 12 % of the stem count of a miombo stand (Ryan & 

Williams 2011). Ribeiro et al. (2008b) and Mapaure & Campbell (2002) measured 

notable stand damages by elephants in addition to fire. However, these kinds of 

factors are highly local instead of being distributed evenly across the miombo.  

 

The total aboveground C stocks on miombo woodlands remain modest compared to 

correspondent figures measured from tropical evergreen forests of Africa, which 

average about 200 Mg ha
-1

 (Lewis et al. 2009). However, there is evidence that the 

largest C stock on miombo by far is comprised by soil organic carbon (SOC) rather 

than the living vegetation (e.g. Ryan et al. 2011; Walker & Desanker 2004).  

 

Presented estimates for carbon stocks belowground 

Methods for estimating vegetation belowground BM are neither well established nor 

standardized, since they present a challenging process for researchers (Pearson et al. 

2005; IPCC 2003). This results in that much less is generally known about the 

vegetation BM belowground component than the aboveground component.  

 

There is an apparent shortage of studies including root excavation in miombo 

woodlands. One such study conducted in Tanzania (Malimbwi et al. 1994) resulted 

in root BM comprising 20 % of the total woody BM. Two recent studies that were 

conducted in Zambia (Chidumayo 2013a) and Mozambique (Ryan et al. 2011) and 

included root excavation resulted in higher figures of 35 % and 33 % respectively. 

This matches a recapitulation by Frost (1996) that suggests belowground BM share 

ranging between 32–37 % of the total woody BM. Mokany et al. (2006) have 

conducted a comprehensive meta-analysis of root to shoot (R:S) ratio studies 

globally. They suggest a R:S ratio of 0.322 for tropical dry woodlands, which stands 

for circa 24 % of the vegetation total biomass. 
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Soil organic carbon represents the last major C sub-stock of miombo woodlands, and 

possibly the one with most significance in global carbon cycle. Available studies are 

limited, but they indicate a C stock either equal to or larger than the vegetation 

altogether. Ryan et al. (2011) and Walker & Desanker (2004) measured SOC stocks 

of 76.3 and 79.6 Mg ha
-1

 down to 0.5 and 1.5 m respectively. Both studies addressed 

multiple, fixed depth layers of soil. The results of the former demonstrated a clear 

exponential decay of SOC content with increasing depth along the whole sampling 

profile, and the results of the latter recorded SOC content decrease until the depth of 

15 cm after which it remained relatively constant. Rossi et al. (2009) measured a 

SOC stock of 72.47 Mg ha
-1

 from 1.0 m deep soil pits, though the sampling size was 

limited. Notably, all three results are very close to each other, even though there is a 

wide variation in the sampling depths. Part of this is explained by the exponential 

decay of the C content, but the results also speak for differences between study sites.  

 

Two studies that addressed only the top 30 cm of the soil (referred to as topsoil 

throughout this study) in miombo were found. Woollen et al. (2012) resulted in an 

average SOC stock of 40.1 Mg ha
-1

, with the top 5 cm accounting for circa 30 % of 

the whole stock of the 30 cm layer. Williams et al. (2008) do not provide their SOC 

stock mean value, but report a median of 57.9 Mg ha
-1

 instead.  

 

1.1.3 Land use conversion and miombo socioeconomic role 

 

The present human footprint on miombo landscape is a result of a long continuum. 

Evidence from southwest Tanzania indicates that the local miombo landscape has 

been affected by wide-scale fires for at least 1500 years, coinciding with the arrival 

of agriculturist people to the area and hence being presumably anthropogenic 

(Thevenon et al. 2003). While it is evident that the co-existence of miombo 

woodlands and people does not take place without any disturbance on ecosystem, the 

critical issue from the ecosystem point of view is the disturbance intensity. 

Generally, severity of deforestation and forest degradation has followed the human 

population growth on miombo region, and hence accelerated (Misana et al. 1996).  
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Two decades ago Hannah et al. (1994) estimated that 62 % of the miombo ecoregion 

still remained undisturbed, while the rest fell under categories “partially disturbed” 

and “human dominated” (21 % and 17 % respectively). Also the population densities 

on much of the miombo region were relatively low for the time being (Campbell et 

al. 1996). Nowadays, at least 100 million people either inhabit the miombo region or 

stand otherwise straight dependent of it considering their livelihoods (Dewees et al. 

2011), and given the population growth rates of sub-Saharan Africa, the figure is 

likely to increase exponentially in the future. While parts of the miombo woodlands 

still exist relatively intact, rapid processes of deforestation and forest degradation are 

widely ongoing (Dewees et al. 2011; Abdallah & Monela 2007) (Figure 3).  

 

For local people, miombo woodlands provide both wood products like fuelwood and 

construction material, and non-wood forest products (NWFPs) like food, medicines 

and fodder (Clarke et al. 1996). Also ecosystem services such as erosion control, 

water regulation and soil fertility promotion are provided (Clarke et al. 1996). A 

study by Kalaba et al. (2013a) revealed that forest products from miombo constituted 

circa 44 % of the income of an average rural household in Copperbelt of Zambia. 

The share was even greater among the poorest of the households.  

 

While forest product harvesting can still be seen as relatively harmless, a way more 

destructive phenomenon is the expanding agriculture traditionally practiced as 

shifting cultivation widely across the miombo region (Frost 1996). Jansen et al. 

(2008) discovered in their Mozambique-based study addressing land use change 

dynamics, that miombo woodlands decreased substantially during the survey period 

of 1990–2004 while being replaced by agricultural land. They also discovered that 

agriculture is changing towards practices more permanent than shifting cultivation, 

which again processes greater barrier for miombo regeneration. Also timber 

harvesting – both legal and illegal – has been blamed for causing deforestation and 

forest degradation in this context. Even though miombo houses valuable species to a 

very limited extent, selective logging does occur, and it opens the way to the 

woodlands for the other actors to exploit (Sitoe et al. 2012).  
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Figure 3. Forest cover and forest cover change in the miombo region in 2000–2012. Source: Global 

Forest Change map by Hansen et al. (2013); map interface by Google Earth. Available online: 

[http://www.earthenginepartners.appspot.com/science-2013-global-forest] 

 

 

Another key driver promoting woody biomass loss in the miombo region is the 

demand for fuelwood and charcoal, which together account for about 70 % of the 

energy consumed in southern Africa (Syampungani et al. 2009). The production of 

charcoal especially is increasing with the rapid population growth (Syampungani et 

al. 2009) and the lack of alternative energy sources (Sitoe et al. 2012; Kutsch et al. 

2011). The pressure on forests and woodlands due to charcoal production is greatest 

in proximity of urban areas (Sitoe et al. 2012), and zones of deforestation have 

developed around major human settlements (Kutsch et al. 2011). 

 

Chidumayo & Gumbo (2013) state that charcoal production cannot be held as the 

sole reason for deforestation, since the activity only leads into forest degradation on 

the landscape level. This indicates a more complex pattern of land use change, where 

one activity makes way for the other. The argument is supported by evidence of 

miombo ecosystem appearing relatively resilient, when given time to recover. 

Chidumayo (2013b, 2004) found strong regeneration of miombo following clear cut, 

which occurred through resprouting of the preceding woody vegetation. Williams et 

al. (2008) monitored re-growth of abandoned agricultural lands, and found no 
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difference neither in terms of carbon stocks nor biodiversity indices between 

undisturbed woodlands and sites with about 25 years of abandonment. It appears that 

suppressing miombo down to degraded fallow requires constant land use pressure by 

human activities. 

 

As a synthesis, the land covers replacing miombo woodlands are of anthropogenic 

origin, and generally either active agricultural land or transitional vegetation of some 

kind. Third possibility is forest plantations of exotic species, further addressed in the 

chapter below. 

 

1.1.4 Forest plantation investments in Mozambique 

 

The forest industry sector has undergone a global change, in which the production is 

shifting from the natural forests of Europe and North America increasingly to 

intensively managed forest plantations in Asia, Africa and Latin America (Toppinen 

et al. 2010; Bael & Sedjo 2006). The shifting is catalyzed by faster growth of wood 

and cheaper factors of production in these areas (Bael & Sedjo 2006), out of which 

land is the most important (Toppinen et al. 2010).  

 

Forest plantations typically consist of intensively managed stands of exotic species 

intended to produce wood or non-wood forest products (FAO 2006). The most 

common forest plantation species are eucalypts and southern pines, with the former 

mostly grown for pulpwood and the latter grown for timber (Evans & Turnbull 

2004).  

 

Mozambique is a country with relatively high remaining forest cover, but fast rates 

of deforestation and forest degradation (Sitoe et al. 2012; Marzoli 2007). The forest 

loss has lead into availability of cleared land for companies to pursue, and recently 

several large scale plantation forest investments have occurred or are currently 

occurring in the country (Nhantumbo et al. 2013). Industrial forest plantation projects 

are also inviting from the government point of view, providing much-desired foreign 

investments. The Mozambican state has identified 7 million ha of potential land for 

industrial forest plantations in the country (mainly located in the northern part), out 
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of which 3 million ha are already targeted for practical land allocation for this 

purpose (República de Mozambique 2013).  

 

 

Figure 4. Concessions for agricultural and forestry investments in Mozambique by area and type. 

Source: PAIMO project work package 1. 

 

 

Figures about the existing forest plantation cover have been few and outdated. 

Marzoli (2007) estimated that planted tree stands in Mozambique covered about 1.7 

million hectares, however only undefined part of the figure representing industrial 

pulp and timber plantations. FAO country report for Mozambique, in contradiction, 

estimated that the total area of forest plantations in 2005 had been a modest 24000 

hectares (FAO 2010). Most recently, the PAIMO project (see section 1.1.5) mapped 

forestry investments in Mozambique based on the official concessions allotted to the 

purpose by the government (Figure 4). Since no private land ownership is recognized 
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in Mozambique, land use concessions granted for 50 years are the primary way in 

which forest plantation companies can obtain land (Sitoe et al. 2012). 

 

Industrial forest plantations are a relatively new phenomenon in Mozambique, and 

their effect on both livelihoods of the local people and carbon stocks of the 

ecosystem on a miombo landscape are still poorly known. It has been recognized that 

the introduction of plantations will cause major land use changes, which again are 

going to impact the rural communities (Landry & Chirwa, 2011). 

 

1.1.5 PAIMO project framework 

 

This study has been conducted in the framework set by an academic research project 

titled PAIMO. The project was established to address the need of evaluating 

diversified industrial plantation establishment effects in southern African context – 

the initials stand for Private Agricultural Investments and Land Use Change Impact 

on The Adaptive Capacity of Local Communities to Climate Change in 

Mozambique. The main focus of the project has been on forest plantation 

investments, in which sense the title may appear deceptive. Arguably the most 

significant group of any private LULUCF sector investments in the selected study 

area of northern Mozambique is currently formed by forest plantations.  

 

PAIMO project has been carried out jointly by Viikki Tropical Resources Institute 

(VITRI) at University of Helsinki and Pellervo Economic Research (PTT), both 

based in Helsinki, Finland, and Eduardo Mondlane University (UEM) based in 

Maputo, Mozambique.  

 

PAIMO project has four diversified work packages, each addressing the industrial 

plantation investment scenario from a different aspect. Work package 1 maps the 

existing plantation investments and compares them by numbers. Work packages 2 

and 3 have their focus on plantation investment socioeconomic effects on local 

communities, with interviews of the local community members as the main study 

method. Work package 4 estimates the effects of plantation investments on carbon 

stocks of the landscape.  
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1.2 Objectives of the study 

 

The outcomes of this master’s thesis study are intended to provide the information 

required for executing the PAIMO work package 4. The objectives are listed below: 

 

General objective Compare carbon stocks (Mg ha
-1

) between native vegetation 

and forest plantations on the study site. 

Specific objectives 

Objective 1 Quantify carbon sub-stocks and calculate the total average 

carbon stock on different types of native vegetation. 

Objective 2 Quantify carbon sub-stocks and calculate the total average 

carbon stock on different types of forest plantations. 

 

The correspondent research questions are: 

Research question 1 How large are the average carbon stocks of the land use types 

representing native vegetation? 

Research question 2 How large are the average carbon stocks of the land use types 

representing forest plantations? 

 

Hypotheses of the study: 

H0: Forest plantation establishment has no effect on the carbon stocks. 

H1: Forest plantation establishment has an effect on the carbon stocks. 
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2. MATERIAL AND METHODS 

2.1 Study site 

 

The study was conducted in the province of Niassa in northern Mozambique. The 

province is located in the northern part of the country by Lake Malawi and the border 

of Tanzania (Figure 5). Niassa has the lowest population density in Mozambique, 

with majority of people inhabiting rural areas and being dependent of subsistence 

agriculture and surrounding nature (Nhantumbo et al. 2013). The vast majority of the 

province belongs to the miombo region (White 1983).  

 

The total area of Niassa covers 12.9 million ha, and as for the forest plantations, 2.47 

million ha have been identified as potential for them and 0.64 million hectares are in 

the process of land allocation to plantation companies (Nhantumbo et al. 2013).  

 

 

 

Figure 5. Location of the study site. Source of the maps: Google Maps (AfriGIS 2014) and Bing Maps 

(Nokia 2013; Earthstar Geographics SIO). 

 

 

The field sampling areas of the study were located in the districts of Lichinga, Sanga 

and Muembe, east and northeast from the provincial capital city Lichinga (Figures 5 

and 7). The distance from Lichinga to the sampling areas ranged between 5–60 km. 
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One sampling area was located about 10 km south of the city. The study site as a 

whole included forest plantation activities by several private forestry companies, 

mosaics of traditional land use including slash-and-burn cultivation, as well as native 

miombo woodlands affected by varying level of human influence.  

 

The mean annual rainfall is reported varying mainly between 1000–1400 mm in the 

three districts housing the study site, though the areas of the highest altitudes even 

receive more (Ministério da Administração Estatal, 2005a, 2005b, 2005c). White 

(1983) categorizes the study site as wetter miombo, which is supported by the high 

mean rainfall figures. The altitudes are generally high, ranging on both sides of 1000 

m, which causes high variation of temperature between the seasons (15–35°C with 

the annual mean generally less than 22°C) (Ministério da Administração Estatal, 

2005a, 2005b, 2005c). Soils of the area are most typically fine-textured red clay soils 

(Ministério da Administração Estatal, 2005a, 2005b, 2005c).  

 

The field measurements of this study took place on the study site during September 

and October 2010.  

 

 

2.2 Methodological framework 

 

This study required adopting a locally relevant land use classification, including the 

forest plantations, in order to provide a basis for a detailed carbon stock comparison. 

Once classification was determined, it acted as a basis for stratification, followed by 

field sampling of each land use class (LUC). Carbon stocks were then quantified 

with calculations based on the results of the field survey.  

 

The total carbon stocks were calculated as a sum of three major carbon sub-stocks 

(Table 2): aboveground vegetation, belowground vegetation and soil organic carbon 

(SOC). This division was applied on all LUCs of the study. Each of the included C 

sub-stocks carried a separate methodology of quantification. Litter and dead wood as 

sub-stocks were excluded from the survey. This was because of their presumably 

limited contribution to the total C stocks and because of the limited time and 
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resources of the study as well. The final decision was made on field, based on visual 

estimation of their low quantities. 

 

 
Table 2. The list of carbon sub-stocks included in the scope of this study.  

    

Carbon sub-stock n (cumulative) 

Vegetation aboveground carbon 1 

       Trees 2 

       Shrubs and saplings 3 

       Herbaceous vegetation 4 

Vegetation belowground carbon 5 

Soil organic carbon 6 

   

 

Aboveground vegetation carbon was further divided into three subcategories in the 

measurements. Carbon stock of trees was estimated based on allometric equations, 

whereas carbon stocks of shrubs and saplings as well as the herbaceous vegetation 

were measured with methods of destructive sampling. Belowground vegetation 

carbon was estimated solely based on allometric equations due practical limitations 

of the field work. Soil organic carbon was determined in laboratory from soil 

samples collected in the field. 

 

Prior to measurements, the forest plantations of the study area were known to be 

extensively juvenile and not represent the average of the intended growing schemes 

for the time being, concerning vegetation carbon stocks both above- and 

belowground. On the contrary, it was assumed that vegetation carbon stocks of other 

land uses had reached an equilibrium state. Their average carbon stocks were 

assumed to be recordable directly by repeated measurements on sampling plots, as 

long as the natural variation of the class would be equally covered. This difference in 

maturity between the land uses placed requirements for the methodological design of 

the study.  
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The resulted approach was to divide land use classes into two main groups: native 

vegetation and forest plantations. The methodological framework, demonstrating the 

differences between the groups, is illustrated in Figure 6. Most importantly, an extra 

step of estimating the plantation growth was included in the methodology concerning 

the forest plantations group. This was done based on field measurement results, 

existing growth models and growing schemes provided by the plantation owner. The 

other methodological differences between the two groups included a different 

sampling strategy, further described in chapter 2.4, and some technical modifications 

in field measurements.  

 

 

 

 

 

Figure 6. The methodological framework of this study.  
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2.3 Land use classes 

2.3.1 Classification process 

 

Determination of the LUCs to be used in this study started by evaluating the 

relevance of existing classifications, in relation to the objectives of the study and the 

landscape of the study site. Discovered existing classifications had been formulated 

in past forest inventories concerning this part of Africa and also in the UEM research 

tradition concerning comparable studies. The landscape of the study site was 

addressed with literature and aerial photos, and later with field visits as well.  

 

The final land use classification adopted in this study is strongly influenced by the 

UEM research tradition, and has its basis on on the classification adopted by the 

second and the newest national forest inventory (Inventário Florestal National, IFN) 

completed in Mozambique (Marzoli 2007). The IFN classification recognises FAO’s 

definition of forest. This system was chosen since it was considered to be of highest 

relevance and applicability. The vast majority of IFN classes were dropped out 

herein since they were too detailed for, or fell outside of the interest area of this 

study. On the contrary, the single class of forest plantations in IFN was divided into 

two classes: eucalypt and pine plantations. These were the two major planted tree 

genera present on the study site.  

 

The only type of pristine natural vegetation discovered at the study site was miombo, 

presumably the dominant land cover before the presence of major human influence 

(White 1983). Human activities as disturbance, most typically constant removal of 

wood for charcoal production or clearance of new farmland, had caused appearance 

of the other land covers that lacked the defining characteristics of miombo. 

Plantations formed a new type of land cover emerging from anthropogenic origin.  

 

A major land cover that was excluded from the study was active farmland, consisting 

of small-scale household farms called machambas. Since the field work was carried 

out during dry season, farmland represented practically bare soil with low overall 

relevance to perform biomass measurements on. Instead, abandoned fallow land of 

the past farms was included as a LUC.  
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Six distinctive LUCs were finally chosen to be included in the survey, four of them 

representing native vegetation and two of them representing forest plantations. This 

classification was considered to be both comprehensive and continuous in relation to 

the land cover present on the study site, as well as relevant in relation to the study 

objectives. The adopted classification is presented in Table 3, followed by a brief 

description of each class. Ground photos depicting the six classes are included in 

Annex 1. 

 

 

Table 3. The land use classification applied in this study. 

        

Land use class Label Classification criteria    Group 

Dense miombo MDe Native forest; canopy cover above 40 % 

   Native vegetation   

Open miombo MOp Native forest; canopy cover below 40 % 

Other woody 

vegetation 

OWV Woodland degraded below the FAO 

definition of forest OR former agricultural 

land with 5 or more years of abandonment 

Fallow land FaL Former agricultural land with less than 5 

years of abandonment 

Eucalypt plantations EuP Industrial plantations consisting of 

Eucalyptus sp. 

  Forest plantations   
Pine plantations PiP Industrial plantations consisting of Pinus sp. 

     

 

2.3.2 Description of the classes 

Dense miombo 

Dense miombo was the first of the two native vegetation land use classes in this 

study that were considered to be forest according to the FAO definition, which 

requires canopy cover above 10 % and minimum height of 5 meters (FAO 2010). In 

order to be classified as dense miombo, a woodland stand had to exceed both the 

minimum height and a canopy cover of 40 %. The latter was the distinctive factor 

between this class and open miombo.  
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Dense Miombo represented the relatively undisturbed native woodland in the 

landscape of the study site. It only appeared on more remote areas of the study site, 

uneasily reachable or far away from major human settlements.  

 

Open miombo 

Open miombo was the second native vegetation land use class to meet the FAO 

(2010) forest definition. Like on dense miombo the dominant height on open 

miombo was above 5 meters. Canopy coverage had to meet the FAO minimum 

requirement of 10 % (FAO 2010), but remain under 40 % on the contrary to dense 

miombo. 

 

Open miombo represented native woodland like dense miombo, but typically carried 

moderate signs of forest degradation at the study site, indicating that human activities 

were the major cause of lower canopy coverage. However, in some cases the lower 

canopy coverage appeared to be a result of site characteristics rather than human 

activity.  

 

Other woody vegetation 

Areas dominated by trees or shrubs but not falling under the FAO definition of forest 

were classified as other woody vegetation. In addition, if the site had been under 

agricultural use before, more than five years of abandonment were required as a 

classification criterion. 

 

Other woody vegetation represented a heterogenic group of degraded miombo 

vegetation. The areas representing other woody vegetation carried heavy signs of 

continuous forest degradation with major removal of woody biomass. This class 

appeared widely alongside fallow land in proximity of human settlements. The other 

woody vegetation LUC practically always appeared to be a result of human activity 

at the study site. Except of very marginal areas such as rocky formations, actual 

native shrublands or grasslands were not encountered.  
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Fallow land 

Abandoned agricultural areas (machambas no longer under active management) were 

included in the study as the fallow land class. Preceding abandonment period with a 

maximum of five years was required as a classification criterion. After five years of 

re-growth, the abandoned machambas would typically fall into the class of other 

woody vegetation already. 

 

Fallow land was dominated by herbaceous vegetation accompanied by shrubs and 

young trees to varying extent. Aside from active machambas, fallow land was 

typically the dominant land use appearing in conjunction with human settlements. 

Also heavily degraded grasslands and shrublands with no apparent history of 

agriculture as previous land use can be held as a part of this class. However, no plots 

of this kind were measured in the course of this study. 

 

Eucalypt plantations 

The first of two forest plantation classes, this class covers homogenous stands of 

industrial tree plantations consisting of eucalypts. The species included in the survey 

were Eucalyptus grandis and Eucalyptus urograndis (hybrid species E. grandis x E. 

urophylla), which were the primary species presently planted on the study site. Since 

the state of the forest plantation industry on the study site is still in an early stage, the 

vast majority of the eucalypt stands present were juvenile. An intense soil 

preparation reaching down to 80 cm had preceded the recent plantings, necessary to 

break the extremely hard structure of the clay-rich soil for roots to grow. 

 

Pine plantations 

Highly similar in other characteristics with eucalypt plantations except the species, 

this class covers the industrial tree plantations consisting of pines. The species 

included in the survey were Pinus patula and Pinus maximinoi. The latter was 

planted widely on the study site at the time of the field work as an industrially newly 

emerged species, and the former was included to get observations of older-growth 

stands generally formed by this species on the study site. However, no truly late-

rotation stands were present on the study site for time being.  
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2.4 Sampling 

2.4.1 Principles of the sampling 

 

The requirement for the sampling system was to get a sufficient number of 

observations per land use class, so that the statistical validity of the data would be 

ensured. Further requirements included the system to be as efficient and objective as 

possible. In the complex multi-level mosaic of land uses distributed over the study 

site, applying an objective sampling system with the study objectives and given 

resources presented a challenge. Eventually, it was decided to apply subjective 

sampling for choosing the microsites for field measurements (further referred as 

measurement areas or field measurement areas) on the study site. A sampling grid 

was then placed on each of these field measurement areas. This was done with a 

random starting point to ensure objective placement of the sample plots on the level 

of field measurement areas. 

 

The criteria for choosing the field measurement areas were (i) presence of the LUC 

characteristics presented in chapter 2.3 (ii) dominance of a single LUC on area (iii) 

area size sufficient to theoretically house about twenty or more sample plots (iv) 

proximity to community included in the PAIMO project socioeconomic survey. The 

last criterion had to be considered both from the logistic point of view and to ensure 

the data validity in the whole PAIMO project framework. Extensive scouting in the 

field, aerial photo consultancy on Google Earth and Bing imagery, and stand 

information on forest plantations were all applied in the choosing process. A detailed 

description of the field measurement areas that were measured in this study is 

presented in chapter 2.4.3. 

 

Soil sampling was fixed as a part of the plot design, so systematic sampling strategy 

also applied with the soil sampling. Soil sampling aimed at getting a high number of 

samples for C content determination, since the variation could neither be predicted 

nor calculated in course of the study. In order to make the soil sampling more 

efficient, composite sampling was applied in the process. Composite sampling 

reduces both the number of samples to be analyzed and the variation between them 

while maintaining the coverage of the sampling high (Mason 1992).  
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2.4.2 Applied sampling protocols 

 

The following protocol applied for native vegetation LUCs. Each LUC was 

measured primarily on a single field measurement area. Any plots falling outside of 

the LUC in question were excluded from the sampling. Coordinates for the starting 

point were derived randomly from Google Earth and a grid with plot interval of 100 

meters was applied. Tentative results for aboveground tree and shrub carbon stocks 

were calculated along the survey. A generic allometric equation developed for 

Mozambique (derived from Henry et al. 2011) and an estimated coefficient of 0.25 

for fresh biomass carbon content were used in the process. The tentative results were 

applied into MS-Excel based Winrock Sampling Calculator (Walker et al. 2007) to 

calculate the minimum theoretical sampling intensity per LUC. This enabled 

adjusting the sampling intensity during the field survey, and ensured that the final 

sampling intensities of the study remained well above statistically safe numbers.  

 

Forest plantation LUCs on the contrary were sampled with homogenous plantation 

stands as field measurement areas. The stands included in the study were hand-

picked based on stand information provided by the plantation owner. The 

information included species, age, stem count and survival rate, but there was no 

growth or yield data available. The aim of the sampling was to include as many age 

cohorts of the surveyed species as possible with two or more replicate plots on each 

stand. The number of sample plots per plantation stand was kept low since the stands 

were expected to be relatively homogenous each. A stand was not chosen if it had 

demonstrated low survival rate according to the pre-information. 

 

A grid with a plot interval of 50 meters was applied on the forest plantations due to 

limited stand sizes and smaller plot radius compared to native vegetation. A starting 

point for each grid was chosen randomly in the field. It was not possible to calculate 

tentative results along the survey of the forest plantations, because the methodology 

of the study required growth estimation in the calculations phase. A number of plots 

comparable with the other LUCs was measured both on eucalypt and pine 

plantations. 
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2.4.3 Field measurement areas 

General figures 

A total of 93 sample plots were surveyed in this study, with 59 of them placed on 

native vegetation LUCs and 34 on forest plantation LUCs. The detailed distribution 

is shown in Table 4. 

 

 

Table 4. The number of measured sampling plots per each land use class. 

    

Land use class n of sample plots 

Dense miombo 13 

Open miombo 16 

Other woody vegetation 17 

Fallow land 13 

Eucalypt plantations 15 

Pine plantations 19 

Total 93 

   

 

Native vegetation was sampled on four primary areas, coded A, B, C and D (Figure 

7). They were used to survey a single class each. One more area, coded F, was 

measured as an additional site. Plots of both open miombo and other woody 

vegetation were surveyed on area F. The total number of sample plots measured per a 

native vegetation LUC varied between 13 and 17. Each of the grids on areas A–F 

ended up having missing observations, because points representing wrong LUC or 

falling on some completely different land cover, like road, were excluded.  

 

There was a higher number of forest plantation field measurement areas (stands) than 

those of native vegetation (Figure 7). This was because of the different sampling 

protocol. The number of sample plots measured per stand varied between 2 and 5. 
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Altogether, 5 different eucalypt stands 6 different pine stands were sampled and 

measured, housing a total of 15 and 19 sample plots respectively.  

 

 

 

Figure 7. Location of the field measurement areas of this study. Red markers point the native 

vegetation areas A to F. Blue unlabeled markers point the measured forest plantation stands. Also the 

locations of the city of Lichinga and communities of Chimbonila, Muembe and Malulu are marked. 

Map compiled with Google Earth.  

 

 

Area A 

Fallow land LUC plots were measured at area A. The area was located about 20 

kilometers east from the city of Lichinga, on the southern side of the highway 

leading from Lichinga to Marrupa. The distance to the community of Chimbonila – 

an administrative center and a settlement of notable size in terms of Niassa province 

– located on the western side of the measurement area was only 2 kilometers. A tiny 

roadside community neighbored the measurement area in northeast. The exact 

location and sample plot composition of area A is shown in Figure 8. 

 

N 

10 km 



29 
 

A total of 20 plots were visited at area A, seven of which were in active agricultural 

use at the time of the measurements and were hence excluded from the study. 

Measurements were conducted on 13 plots. Two plots were shifted towards the 

correct LUC (see 2.5.2 for point shifting). Since area A was the sole area for fallow 

land LUC measurements, a total of 13 fallow land sample plots were eventually 

recorded in the study.  

 

 

 

Figure 8. Surroundings and sample plot composition of measurement area A. Red markers point the 

sample plots included in the study (not in scale). Community of Chimbonila is visible in the southwest 

corner of the picture. Lichinga-Marrupa highway next to the measurement area is also visible. Notice 

the two shifted points and missing observations. The latter was due mosaics of active agriculture (not 

detectable in picture because of the fast land use dynamics of the area). Map compiled with Google 

Earth (aerial photos from 2013). 

 

 

The relative proximity of the provincial capital Lichinga carried a notable effect on 

the whole landscape surrounding the field measurement area A. Trees were generally 

unable to grow mature at this distance from the city before being harvested and made 

into charcoal. This already generated an open type of landscape. The deforestation 

was ultimately caused by agricultural land use pressure from the community of 

Chimbonila, resulting in what appeared to be an intensively managed mosaic of 

N 

500 m 
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active agriculture and fallow land widely around the community.  Area A was a pure 

representative of the land use of this type (Figure 8), and hence selected as a field 

measurement area. There were also signs of recent fire present on part of the plots 

measured on the area, indicating occurrence of prescribed burning. 

 

Area B 

Area B was the primary area at which open miombo was measured in this study 

(Figure 9). The measurement site was located in the district of Sanga, about 5 km 

south from the community of Malulu housing a district administrative center. The 

straight distance to the city of Lichinga was about 40 km. The area was accessible by 

a small road and a number of paths.  

 

 

 

Figure 9. Surroundings and sample plot composition of area B. Red markers point the sample plots 

included in the study (not in scale). The grid was divided into two parts due exclusion of points 

representing wrong land cover. The forest clearance is too recent to be visible in the picture. Notice 

the two shifted points. Map compiled with Google Earth (aerial photos from 2013).  

 

 

N 

500 m 
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Area B was located right behind the fields of the community members, and processes 

of ongoing deforestation and forest degradation were observed in the woodlands. The 

latter appeared as fuelwood collection, whereas the former was due clearance of new 

agricultural land. A total of 23 plots were visited at the area, 14 of which were 

included in the study. The rest of the plots fell either under active agriculture, other 

woody vegetation or cleared road. It can be seen in Figure 9 how the grid was 

divided into two sections, because recently cleared new machambas fell in between. 

Even though some plots were discovered to have a naturally low tree cover, the 

primary reason for the less than 40 % tree cover in the area was identified being 

biomass removal by humans. Signs of cutting were common and piles of prepared 

fuelwood were waiting for transportation by forest paths. However, the level of 

degradation was still moderate and the site was easily identifiable as mature miombo 

woodland.  

 

A soil different from the other measurement areas was observed at area B. The other 

measurement areas generally demonstrated red clay soil, but the soil at area B was 

completely grey of color. However, the soil characteristics were not evaluated 

according to any official criteria in the scope of this study.  

 

Area C 

Dense miombo plots were measured solely at area C. The area was a part of a large, 

relatively undisturbed patch of miombo extending to the both sides of the road 

connecting the communities of Muembe and Chiconono (Figures 7 and 10). The 

measurement area was located about 12 km northeast from Muembe. The straight 

distance to the city of Lichinga was about 60 km.  

 

Area C represented closed, mature miombo with full tree cover present. No visible 

signs of cutting of trees or other degradation processes were observed in the area. 

The likely reason for the woodland to still remain undisturbed was that it stood far 

enough from major settlements, including the provincial capital with major charcoal 

markets. A total of 16 plots were visited at the area, 13 of which were measured in 

the study (Figure 10). Three plots were dropped out: one represented open miombo, 

one was located on a dry stream bed and one in proximity of the road had been 
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recently cleared for machamba. The latter testified for deforestation making its way 

to the area, through access by the road.  

 

 

 

Figure 10. Surroundings and sample plot composition of area C. Red markers point the sample plots 

included in the study (not in scale). Road from Muembe to Chiconono is visible next to the 

measurement area. Map compiled with Google Earth (aerial photos from 2013). 

 

 

Terrain of area C had generally higher degrees of slope than the other measurement 

areas of the study. A slope greater than 10 % was recorded on seven plots. There was 

also evidence of past low-intensity fires on a few plots, though none of them had 

burned after the previous growing season.  

 

Area D 

Area D was the primary area for measurement of other woody vegetation in this 

study. The area was located in proximity of a relatively small roadside community by 

the road leading from Lichinga-Marrupa highway to Muembe (Figure 11). The 

nearest major settlement was the community of Mapaco about 4 km southwest from 

the area. The straight distance to the city of Lichinga was about 30 km.  

N 

500 m 
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Area D had been subjected to heavy cutting and woody biomass removal, and hence 

the level of forest degradation was high. A total of 25 plots were visited at the area, 

only 13 of which were included in the study (Figure 11). Active machambas only 

represented two of the excluded plots. Open miombo represented three, and seven of 

the excluded plots either represented pure fallow land (abandoned machambas) or 

totally deforested areas appearing as shrubby grasslands, equal to fallow land in 

vegetation characteristics. This demonstrates well the position of the other woody 

vegetation as a heterogeneous transitional class occurring between miombo 

woodlands and fallow lands. The plots measured in the study generally had notable 

stem counts of small diameter trees below and over DBH of 5.0 cm, while trees with 

a DBH exceeding 20 cm occurred sparsely. Wildfires had been common in the area, 

and part of the measured plots had lost the most of their herbaceous vegetation cover 

in fire.  

 

 

 

Figure 11. Surroundings and sample plot composition of area D. Red markers point the sample plots 

included in the study (not in scale). The area was bordered by fallow land and active agriculture in the 

east and west, and mosaics of open miombo and fallow land in the south. Two fallow land plots were 

excluded in the middle of the grid. The road leading from Lichinga-Marrupa highway to Muembe is 

also visible. Map compiled with Google Earth (aerial photos from 2013). 

N 

500 m 
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Area F 

The only area containing plots included from two different LUCs was area F, 

measured as an additional site. The area was located by the route from Chimbonila to 

Muembe like area D, but 10 km further to the distance of Muembe. The straight 

distance to the city of Lichinga was about 40 km. The area had a number of small 

roadside communities nearby, but no major settlements.  

 

 

 

Figure 12. Surroundings and sample plot composition of area F. Blue markers point the open miombo 

sample plots and red markers point the other woody vegetation sample plots included in the study (not 

in scale). A single plot has been shifted towards north due land use border. The road leading from 

Lichinga-Marrupa highway to Muembe is visible south from the area. Map compiled with Google 

Earth (aerial photos from 2013). 

 

 

Area F represented a mosaic (and also a transitional zone) between open miombo and 

other woody vegetation. Two plots of open miombo and four plots of other woody 

vegetation were measured at the area (Figure 12). Other of the open miombo plots 

represented secondary miombo, re-growing after disturbance. Otherwise the stand 

characteristics were generally similar with the ones described with areas B and D. 

N 

500 m 
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Two more plots were visited at area F in addition to the six measured, but one was 

excluded as fallow land and the other due wildfire present at the site by the time of 

the measurements.  

 

Forest plantation stands 

Forest plantations were measured at 11 different stands of mostly different ages, with 

the distribution presented in Table 5 below. The forest plantation measurement sites 

were significantly more scattered than those of the native vegetation (Figure 13), 

though stretching over a geographically smaller area (Figure 7). Distance to the city 

of Lichinga varied approximately between 5 and 15 km. Since the stands were 

chosen based on the provided stand information, their location did not carry 

importance in the process. 

 

 

Table 5. Number of sampled forest plantation stands by age group. The first two age groups of 

eucalypt include two stands each, planted on slightly different time but addressed as single groups 

herein. The age is given in base ten system. 

        

Species group Age n (stands) n (plots) 

Eucalypt 0.6/0.7 2 5 

 
1.6/1.7 2 5 

 
8.6 1 5 

Pine 1.7 1 3 

 
4.7 1 4 

 
5.6 2 5 

 
7.6 1 3 

  8.6 1 4 

     

 

The included stands were relatively homogenous in terms of stem count within the 

species groups. Altogether, plantations represented a rather homogenous landscape 

across the study site, only varying in the size of the trees between the sites.  
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Figure 13. Locations of the plantation stands sampled in this study. The urban settlements of Lichinga 

city are a dominant element on the northwest side of the map. Eu = Eucalypt stand, Pi = Pine stand. 

Map compiled with Google Earth (aerial photos from 2013).  
 

 

2.5 Field measurements 

2.5.1 Sample plot structure 

 

The plots recorded in this study were intended to be temporary. Circular plot type 

was chosen to be used in measurements of tree aboveground biomass due to its 

efficiency as temporary plot. Furthermore, a nested plot structure was adopted to 

make tree measurements increasingly efficient on the native vegetation LUCs, which 

included a wide DBH variation. Both above-mentioned measures are recommended 

by carbon survey guidelines presented by Walker et al. (2012).  

 

Walker et al. (2012) also suggest general recommendations for circular plot radiuses 

concerning certain DBH classes. They point out however, that local modifications 

are necessary on savanna-type woodlands that may include high variation both in 

DBH and stand density. Test measurements were performed in this study prior to the 

N 

5 km 
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actual field survey to adjust the nested plot structure for optimal sample size. This 

was done both on native vegetation and forest plantations land use classes. Based on 

results, the plot structure illustrated in Figure 14 was adopted with the following 

DBH classes and circle plot radiuses (Table 6). 

 

 

Table 6. Circular plot design for recording trees in this study. Two nested circles were used on the 

native vegetation land use classes. A single circle was sufficient in recording the relatively 

homogenous stands of forest plantations.  

          

Native vegetation   Forest plantations 

DBH (cm) Plot radius (m) 
 

DBH (cm) Plot radius (m) 

5.0–19.9 7.98 
 

0.0– 7.98 

20.0– 20.00       

      

 

A minimum DBH of 5.0 cm was applied for trees of the native vegetation LUCs. 

Trees below this limit were considered as saplings and assessed in destructive 

sampling with shrubs.  

 

There were fixed subplots included in the plot structure for destructive sampling of 

non-tree aboveground vegetation (Figure 15). A circular plot, placed in the center of 

the plot design with a radius of 2.0 meters, was used to sample shrubs and saplings. 

A square shaped clip plot of 1.0 m
2
 was used to sample herbaceous vegetation. Both 

subplots followed design recommendation by Walker et al. (2012). The plot structure 

also carried four fixed positions for taking disturbed soil samples. Additionally, a soil 

bulk density sample was taken from a fixed position on part of the plots. The soil 

sampling design is further described and illustrated in 2.5.5. 
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Figure 14. Sample plot illustration. For recording trees on forest plantations, only the smaller circle (r 

= 7.98 m) was applied. The dashed circle represents the subplot on which shrubs and saplings were 

sampled (r = 2.0 m). The clip plot (1.0 m
2
) for sampling herbaceous vegetation is also presented. N 

marks direction to north. 

 

 

 

 

Figure 15. Subplots applied in destructive sampling. A magnification from Figure 14. To avoid 

trampling of the herbaceous vegetation, the 1.0 m
2
 clip plot was not placed in the center of the design.  

 

 

N 

20.00 m 

7.98 m 

 

N 

1 m 

1 m 

2 m 
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2.5.2 Mapping the plots 

 

Determining location of the sample plots in the field was basically a similar process 

in both of the land use class groups, the only difference occurring in the principle of 

determining the center of the first plot. On native vegetation, the starting point was 

predetermined by obtaining coordinates randomly from aerial photos of the sampling 

area in Google Earth. On forest plantations, the stand subject to sampling was 

entered and the starting point was chosen in the field by throwing a suitable object, 

typically a stick, randomly in the air and determining coordinates of the landing point 

with a GPS device. In both cases, the coordinates for the following points in the grid 

were then calculable. 

 

The coordinates of the following plots were not pre-determined, only the directions 

in which the grid was intended to be extended. The sample plots were labeled and 

numbered in the order they were reached, mapped and included in the study on field. 

Coordinate determination was done using a GPS device (Garmin GPSMAP 64s). 

Excluding the plantation first plot case described above, a new plot was found using 

GPS orientation to reach the approximate plot center. A random spot was then picked 

for the exact plot center location inside the precision provided by the GPS device, 

which was typically ± 3–4 meters.  

 

Plots that were found in field to represent a land use class other than the grid was 

intended to survey, or another land use falling completely outside the scope of this 

study, were excluded from the survey. This caused missing observations in regular 

survey grids, since the phenomenon was not uncommon due the fast dynamics of the 

landscape on the study site. The only exception to this principle was additional 

survey area F, where both open miombo and other woody vegetation plots were 

included. On plantation grids, every plot was required to fall under the same stand. 

 

If a plot was found to fall partially on a border of the surveyed land use class on 

native vegetation, the plot location was shifted 20 meters instead of excluding the 

plot. The shifting was applied in a principal compass point directing away from the 

border and towards the surveyed land use class. On plantations, the length of the 

shifting was 10 meters, which was however only applied on one plot. 
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Upon determining the plot center, slope on the plot was measured using the ascent 

(%) scale of the hypsometer and recorded if it was 10 % or above.  

 

2.5.3 Measurement of trees 

 

Trees were defined as woody plants with a minimum height of 1.3 meters and a 

minimum DBH of 5.0 cm in this study. The latter criterion was only applied on 

native vegetation LUCs, since juvenile plantation stands generally consisted of trees 

with a smaller DBH. 

 

The sample plot boundaries for recording trees were determined using a nylon rope. 

A rope with a total length of 20.00 meters and a mark at the length of 7.98 meters 

was used on native vegetation. On plantations, a rope with a total length of 7.98 

meters was used. Both of these ropes also had a mark at the length of 2.00 meters for 

the shrub & sapling subplot. Either of the two major soil sampling tools (Figure 18) 

was generally used as a plot center pole at this stage of the measurements. 

 

All living trees inside a plot were recorded. Trees were considered living if they 

included green leaves or if fresh phloem was found under the bark. The second 

criterion was included since some miombo trees were having their leaves dropped for 

dry season while this study was conducted. The recording of trees started from a non-

fixed direction, proceeding clockwise until the first measured tree was 

reencountered. The first measured tree was always flagged to ensure later 

recognition. Trees along the plot boundaries were considered to be inside the plot if 

their assumed point of germination was. 

 

DBH and species were recorded from every tree. DBH was measured using a 

diameter tape (Hultafors, 3 m). A local guide identified species with local name in 

the language of Chiyao. Tree height was recorded from every fourth tree representing 

the same species, counted in the order they were encountered on plot. Counting was 

done over the plots on a same measurement area, but for each measurement area 

separately. This was the principle applied on plantation stands as well. Additionally, 
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height was recorded from every tree with a DBH of 40.0 cm or above. As a general 

principle, height of tall trees was measured using hypsometer and height of low trees 

was measured using either a 4 meter or a 5 meter pole with scale. The threshold 

height separating the two methods was about 6 meters. 

 

Practically, hypsometer was applied on dense miombo, open miombo, plantation 

stands of 5 and 8 years of age and tall trees on other woody vegetation. A pole was 

applied on the rest. Pole being absent on height measurements on the miombo land 

use classes, hypsometer was used down to about 4 meters and height of the lowest 

trees was estimated visually in relation to breast height. 

 

Branching was common on tree species of the native vegetation, often occurring 

already below the breast height. Guidelines presented by Walker et al. (2012) were 

applied with the DBH measurements. A stem branched below breast height was 

recorded with the branches as separate individuals with their own respective DBHs. 

If branching occurred between 1.0–1.3 meters, the DBHs for the branches were 

measured another 30 cm above the branching point to avoid recording anomalies in 

stem form. Similar principal was applied with stem buttresses. 

 

An exception was made on forest plantation LUCs, in the rare case of plantation tree 

species individuals branching into two stems below breast height. To avoid recording 

false number of stems on stand, only the major branch was measured as a stem and 

the minor branch or branches became excluded from the survey. 

 

2.5.4 Measurement of shrubs and herbaceous vegetation 

 

In this study, shrubs were defined as woody plants that did not reach the definition of 

tree in their mature state. Juvenile trees that had not reached the definition of tree due 

their limited age were defined as saplings. Both shrubs and saplings were measured 

in the same merged group, addressed with destructive sampling. 

 

The boundaries of the circular plot for shrub destructive sampling were determined 

using ropes with a mark at 2.00 meters. All woody vegetation that did not reach the 
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definition of tree was cut down using a machete from the plot area. Cutting was done 

as close to the surface of the ground as possible. The material was then weighed 

fresh on a bag with a hanging scale (Berkley 50 lb digital scale). Each weighing was 

repeated four times to reduce error caused by scale inaccuracy. 

 

Destructive sampling was also applied on herbaceous vegetation. The boundaries of 

the 1.0 m
2
 clip plot were shaped from 1.00 meter PVC pipes constructed around the 

vegetation. Direction to north, determined with a compass, was needed at this stage 

to enable the correct plot orientation. The 90 degrees in plot corners were determined 

visually. Figure 16 shows two examples of the clip plot after the sampling has taken 

place. 

 

Herbs were cut from the clip plot area using knife and machete, and then packed and 

sealed into labeled paper bags. All vegetation aboveground parts were intended to be 

collected while excluding the litter. The paper bags were then transported back from 

the field for weighing. The vast majority of the plant material collected was dead and 

dry because the field work took place on dry season. Prior to weighing, the bags were 

nevertheless dried for several days under the sun in daytime to ensure that remaining 

moisture was removed to the extent possible without an access to oven. The digital 

scale used in the weighing carried a precision of ± 5 g. 

 

  

 

Figure 16. Herbaceous vegetation clip plot after destructive sampling on two very different sites. The 

left picture is from a pine stand 7.6 years of age and low tree cover, and the right picture is from a 

closed eucalypt stand 8.6 years of age. The site in the left picture has a dense layer of herbaceous 

vegetation. The site in the right picture shows exceptionally high amount of litter, left outside of the 

sampling protocol, but barely any herbaceous vegetation.  
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2.5.5 Soil sampling 

 

The soil organic carbon (SOC) survey in this study was limited to consider the 

topsoil (30 cm) only. Two types of soil samples were collected: disturbed and 

volumetric. The former were used to determine soil C content and the latter to 

determine soil bulk density (BD).  

 

Disturbed samples were collected from every plot at four positions fixed into the plot 

structure, one in every principal compass point. The obtained soil material was 

combined in pairs into two composite samples per plot. Volumetric samples, referred 

as BD samples herein, were collected from every second plot on native vegetation 

LUCs. The collection was done in the order the plots were mapped on each primary 

area, starting from the first plot the area. On forest plantation LUCs, a BD sample 

was collected from the first plot of each new measurement area (stand) in the order 

the areas were measured. BD samples were collected until a total number of five 

samples per each LUC of the study had been obtained. No volumetric sampling took 

place after this point.  

 

As shown in Figure 17, the positions from which disturbed samples were collected 

differentiated between native vegetation and forest plantations. The principle was to 

take soil samples inside the same plot on which trees were measured (Walker et al. 

2012). On native vegetation, the samples were collected along the sphere of the 

circular plot with 7.98 meters radius, since this placed inside the nested structure. 

However, on forest plantations, the same circle represented the boundary of the plot, 

rather than being inside of it. To conduct the soil sampling inside the plot also at 

forest plantations, the procedure was shifted inwards along an imaginary sphere of a 

circle with a 5.00 meters radius. 

 

Disturbed samples were collected using a soil drill (Figure 18a). The soil was drilled 

down to 30 cm and the soil material obtained was collected into a bag. The principle 

was to get the same relative amount of soil from each depth between 0–30 cm. On 

hardest of the soils, the soil hammer (Figure 18b) was used as an aid to help 

penetrate the soil. Disturbed samples were then combined into two composite 

samples by merging the material as north-east and south-west pairs (Figure 17). The 
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5.00 m x 

soil material was homogenized on location by mixing it thoroughly, and about 300 g 

was packed and labeled while the rest was discarded.  

 

 

 

 

Figure 17. Soil sampling design. Red triangles represent the soil sampling pattern on native vegetation 

LUCs and blue triangles represent the soil sampling pattern on forest plantation. BD sample was 

always collected from the same position in the middle of the herbaceous vegetation clip plot. 

 

 

The final soil samples that were used in the analysis were acquired by collecting 

subsamples of 10–15 grams from each collected composite sample. Out of the 

theoretical maximum of 186 composite samples, a total of 180 samples were 

eventually delivered to analysis. Three samples failed to be collected due high stone 

content in soil and three samples were lost in transportation. 

 

BD samples were collected using a soil hammer (Figure 18b). The hammer was 

loaded with three volumetric soil cylinders, two of which were basically unnecessary 

from the study point of view, and the soil was penetrated by striking repeatedly down 

to the point where the end of the cylinder head was in line with soil surface. It was 

7.98 m 

COMPOSITE SAMPLES 

 

North-East 

 

South-West  

 

 

BD SAMPLE x 
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assumed that the contents of the middle cylinder would remain most undisturbed 

(compression versus material loss) in the process, hence that one was chosen to be 

collected as the sample. The middle cylinder was separated from the other two using 

spatula and knife, then sealed and labeled for analysis. The contents of the other two 

were discarded. 

 

The total amount of BD samples collected in this study was limited by the number of 

soil cylinders required for sampling. There were 30 of them. The height of the 

cylinders was 5.0 cm, and since the middle cylinder was the one collected, the 

resulting BD samples covered soil between depths of 5.0–10.0 cm.  

 

 

Fig. 18a       Fig. 18b 

 

Figure 18. Soil drill (Fig. 18a) used to obtain the disturbed soil samples and soil hammer (Fig. 18b) 

used to obtain the volumetric soil samples of this study. Depth of 30 cm is marked with blue stripe in 

the shaft of the drill. The soil hammer is shown opened, with one of the three cylinders included in the 

cylinder head visible. 

 

 

2.6 Soil sample analysis 

 

The soil composite samples were dried in paper bags in a laboratory oven for four 

days in temperature of 50°C in order to remove possible moisture. The carbon 

content of the samples was analyzed with varioMAX C/N-analyzer. 700–900 mg of 

soil material from each sample was required in the analysis. The analysis was 

conducted twice for 12 randomly picked samples in order to test the precision of the 

analysis. The volumetric soil samples were dried and weighed for determination of 

BD (dry volumetric mass of the soil).  
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2.7 Calculations and data processing 

2.7.1 Allometric equation for native vegetation 

 

The final biomass result for individual trees of the native vegetation LUCs was 

calculated using an allometric equation. The equation (1) applied was a site-specific 

collective allometric equation for native miombo species, developed in the PAIMO 

project framework (Macia, unpublished):  

 

BM = 0.171 * DBH ^ 2.347     (1) 

 

where BM is dry biomass. As can be seen in the equation (1), DBH was applied as 

the sole explanatory variable for BM. The same equation was used with every tree 

measured. Each individual tree biomass was then converted into a figure per hectare 

(Mg ha
-1

) based on their respective circular plot area. Total tree aboveground 

biomass (Mg ha
-1

) per sample plot was calculated as a sum of these figures. Tree 

aboveground biomass per each LUC was calculated as the arithmetic mean of the 

sample plot results from the LUC. Additionally, standard deviation (S.D.) was 

calculated to describe the distribution of the results.  

 

2.7.2 Forest plantation growth estimation 

 

The growth for forest plantations measured in this study was estimated based on site 

quality indices (SI) they demonstrated in their height development, and growth 

models representing the respective SIs. 

 

The age and height data recorded from forest plantation LUCs was plotted against 

graphs drawn from existing growth and yield tables (Figure 19). The growth and 

yield tables of Eucalyptus grandis and Pinus patula from the South African forestry 

handbook (Kassier & Kotze 2000) were used herein due their geographical 

relevance. The height growth on the measured plantations was compared to existing 

figures (Kassier & Kotze 2000), making it possible to estimate the average site 

quality index (SI) of the measured sites for both eucalypt and pine stands (Figure 19). 

A collective SI was determined for both species groups, with eucalypts representing 
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the lowest of the three indices and pines the medium index. Two age groups of pine 

were excluded from the SI determination, since the correspondent stands were found 

to demonstrate significantly reduced growth compared to the others (Figure 19b).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19a            Fig. 19b 

 

Figure 19. Site quality index curves and heights measured in this study for eucalypt (Fig. 19a) and 

pine (Fig. 19b). The SI is determined by dominant height of the stand on a certain age. Eucalypt 

stands were found to represent the lowest site index (SI5 = 14 m) and pine stands the medium site 

index (SI20 = 25 m). Stands from two age groups of pine (5.6 and 7.6 years) demonstrated poor height 

growth and were excluded from the index determination. Site quality index curves drawn after Kassier 

& Kotze (2000). 

 

 

The growing schemes of the plantations were provided by the owner company, 

enabling their comparison with the existing growth tables (Kassier & Kotze 2000). 

Since initial stem densities, harvest timings and harvest intensities were relatively 

similar between the intended growing schemes and the growth tables, it was possible 

to apply the growth tables in the plantation growth estimation as they were. 

Eucalypts growth was estimated over a rotation period of 8 years and pine growth 

was estimated over a rotation period of 23 years. 

 

The average (m
3
 ha

-1
) volume stock for the reported rotation period was calculated as 

an arithmetic mean of the yearly volume stocks during the rotation period, given at 

the growth table of the correspondent site quality index. Considering the years in 

which thinnings of the pine stands took place, growth tables reported two stock 
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volumes (before and after thinning). An arithmetic mean of these two was used in the 

average stock calculation.  

 

Relevant biomass conversion and expansion factor (BCEF) suggested by IPCC 

(2006) was used to convert the calculated average volume stock into stock of 

biomass (Mg ha
-1

) respectively for eucalypt and pine plantations. Finally, the figures 

were converted into terms of carbon with a biomass C content factor also presented 

by IPCC (2006). The resulting values represented the average carbon sub-stocks of 

trees for the forest plantation LUCs. 

 

Because of the different methodology, it was not possible to calculate S.D. for the 

estimated C stocks of trees on plantation LUCs. To address this shortcoming, S.D. of 

the recorded tree heights was applied. Relative S.D. (as percentage of average height) 

was calculated separately for each age class, and then the arithmetic mean of these 

figures was calculated for both LUCs. The resulting coefficients were applied on the 

estimated average plantation tree C stocks, which provided a rough estimate for the 

C stock distribution. The same coefficients were also applied when distributions of 

the plantation aboveground total C stocks and the belowground C stocks were 

estimated. Height distribution was chosen to be utilized in the S.D. estimation 

because it behaves relatively independent of site density and forest management, 

which might vary between the measured stands.  

 

2.7.3 General calculations 

Belowground carbon 

Vegetation belowground biomass was estimated based on a meta-analysis of R:S 

ratio studies by Mokany et al. (2006), and their biome-specific suggestions. The R:S 

ratio applied for native vegetation LUCs was categorized as 

“Tropical/subtropical/temperate woodland” and valued 0.322 with a reported 

standard error of 0.085. The ratio applied for forest plantation LUCs was categorized 

as “Tropical/subtropical dry forest/plantation”, and it valued 0.275 with a reported 

standard error of 0.003. The ratio was reported applicable for stands with shoot 

biomass exceeding 20 Mg ha
-1

, and the plantation growth estimation process showed 

that this requirement was fulfilled forest plantation stands on average.  
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The ratios were used to calculate an estimate for the belowground C stock from the 

total aboveground C stock independently for each plot. Due to lack of reliable 

estimates for shrub and herbaceous vegetation root allometrics in the ecosystems 

covered in this study, the belowground C stocks for trees, shrubs and herbaceous 

vegetation were not estimated separately. Instead, a single figure for total 

belowground C, based on total aboveground C, was calculated. 

 

An exception was formed by the fallow land LUC, which was the only land use class 

with herbaceous vegetation forming a major part of the total aboveground C stock 

(30 %). Grasslands generally carry significantly higher R:S ratios than woodlands 

(Mokany et al. 2006), so the contribution of herbaceous vegetation roots to fallow 

land belowground C stock was calculated separately from trees and shrubs. A higher 

ratio valued 1.887 (standard error 0.304) and categorized as “Tropical/subtropical 

grassland” by Mokany et al. (2006) was applied.  

 

Soil organic carbon 

The analysis by varioMAX provided the carbon content as percentage of the mass of 

the soil. The result was converted into a C stock per hectare with the following 

equation (2) by Pearson et al. (2005): 

 

Cstock = BD * d * C% * 100      (2) 

 

where BD is the bulk density as g cm
-3

, d is the soil sampling depth as cm, C% is the 

soil carbon content as decimal fraction and Cstock is the resulting soil carbon stock as 

Mg ha
-1

. The sampling depth of 30 cm used throughout the study was applied. The 

applied BD values were calculated separately for each LUC as the arithmetic mean 

of the samples from the LUC in question.  

 

Applied conversion factors 

The calculated tree biomass results on native vegetation LUCs were converted into 

terms of carbon using a conversion factor 0.47 (IPCC 2006). On forest plantation 
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LUCs, modelled stand volume aboveground was first converted into biomass with 

BCEFs: the factors applied were 0.8 for eucalypt and 0.55 for pine (IPCC 2006), 

determined by the type of trees (hardwoods and coniferous) and their estimated 

average stock volume. The subsequent conversion into terms of carbon was 

calculated again with the conversion factor 0.47 (IPCC 2006). 

 

Weighed fresh biomass of shrubs and saplings was converted straight into terms of 

carbon by multiplying it with a conversion factor 0.25. The mass of the weighing bag 

was first subtracted from the fresh biomass result. The conversion factor 0.25 was a 

result of assuming 50 % carbon content of the dry mass and 50 % average moisture 

content of the shrub and sapling fresh biomass. The latter assumption was supported 

by Mate et al. (2014), who measured mean moisture contents very close to 50 % for 

stems, branches and leaves of three major Mozambican tropical tree species.  

 

Herbaceous vegetation was weighed dry, and the resulting dry biomass was 

converted into terms of carbon by assuming carbon content of 50 %. The weight of 

the paper bag containing the weighed material was first subtracted from the result. 

The carbon result was further converted into a figure per hectare (Mg ha
-1

) based on 

the clip plot area. 

 

Slope correction 

If a slope of 10 % or above was recorded from a plot, a slope correction was applied 

on the area of circular plots for trees, as well as the circular plot for shrubs and 

saplings, prior to converting the plot biomass result into a figure per hectare. The 

recorded slope was converted into degrees and the correction was calculated with 

equation 3 (Walker et al. 2012):  

 

rcorrected = rmeasured * cos(α)      (3) 

 

where r stands for plot radius and α stands for angle in degrees. The slope corrections 

were only applied in calculations concerning biomass on native vegetation LUCs. On 

forest plantations there was no need for action since no slope of 10 % or greater was 

measured on any of the plots. 



51 
 

 

2.7.4 Statistical analysis 

 

It was tested whether the differences between the carbon sub-stocks and total carbon 

stocks of different LUCs were statistically significant. The testing was conducted as 

ANOVA with Tukey’s honest significant difference test as the method. Tukey’s 

honest significant difference was chosen to be applied instead of the standard t-test to 

reduce the risk of type I error resulting from conducting multiple comparisons 

simultaneously. Equal variances between the groups were assumed. Testing was 

conducted with confidence interval of 95 %. 

 

The analysis could not be conducted on the carbon sub-stock of trees on the 

plantation LUCs, since the data from growth estimation was incompatible with other 

sub-stocks and LUCs. Same applied for any carbon stocks including a plantation tree 

stock as a component. The comparisons had to be made based on the averages only. 

It was also possible to make some conclusions from the height data -based estimates 

of S.D.  

 

The reliability of soil sample analysis was also addressed statistically by testing how 

well the data from the duplicate samples matched each other. The test was conducted 

as simple linear regression between the two sample sets.  

 

All statistical testing was conducted using SPSS software (IBM SPSS Statistics for 

Windows, Version 21.0). 
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3. RESULTS 

3.1 Vegetation aboveground carbon stocks 

3.1.1 Native vegetation 

 

Dense miombo was found to represent the highest total aboveground carbon stocks 

on the native vegetation LUCs, with an average of 37.65 Mg ha
-1

. Fallow land 

represented the lowest C stocks with an average of 2.04 Mg ha
-1

. The maximum and 

minimum recorded in the study also placed on dense miombo and fallow land, with 

respective values of 0.46 and 51.30 Mg ha
-1

. Open miombo and other woody 

vegetation placed in between the two classes with average C stocks of 27.47 and 

11.41 Mg ha
-1

, respectively. All paired comparisons between the classes were 

statistically significant. The mean BA values recorded from dense miombo and open 

miombo were 12.2 m
2
 and 8.8 m

2
 respectively. 

 

The results show that the total aboveground C stock was determined primarily by the 

size of the C stock of trees that also demonstrated statistically significant difference 

between all of the native vegetation LUCs (Figure 20). 

 

 

Fig. 20a. Trees          Fig. 20b. Aboveground total 
 

Figure 20. Box-and-whisker plots for carbon stock of trees (Fig. 20a) and aboveground total (Fig. 

20b) of native vegetation LUCs. The figures are shown as Mg ha
-1

 (y-axes). The boxes represent 

observations between 25
th

 and 75
th

 percentile. The whiskers represent minimum and maximum values 

up to a limit of 1.5 times the height of the box. Observations beyond this point are considered outliers 

and marked as circles. Asterisks mark outliers further than three times the height of the box. Dark 

thick line represents the median value. Land use classes: FaL = Fallow land, OWV = Other woody 

vegetation, MOp = Open miombo, MDe = Dense miombo. Figures drawn with SPSS.  
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The C stock of trees was found to be the largest of the three aboveground sub-stocks 

by far on both miombo classes and other woody vegetation, but only accounted for 

15 % of the total on fallow land. Only three sample plots out of 13 contained any 

trees on fallow land, while the rest of the C stocks were constituted by shrubs & 

saplings and herbaceous vegetation. Other woody vegetation also included a notable 

C stock share of 24 % by shrubs & saplings, whereas both miombo classes were 

totally dominated by C stock of trees (> 90 %).  

 

The distributions of shrub & sapling C stocks and herbaceous vegetation C stocks of 

the native vegetation LUCs are presented in Figure 22 of section 3.1.3 together with 

the correspondent results from the forest plantation LUCs. Section 3.1.3 also 

includes the results of their statistical analysis. 

 

3.1.2 Forest plantations 

 

The model-based plantation growth estimation resulted in average carbon stock of 

20.24 Mg ha
-1

 for trees on eucalypt plantations and 33.00 Mg ha
-1

 for trees on pine 

plantations. The total aboveground C results for forest plantation LUCs are shown in 

Table 7, with the measurement-based figures for shrub & sapling and herbaceous 

vegetation C stocks included. 

 

 

Table 7. Mean aboveground carbon stocks for forest plantations. The results are given as Mg ha
-1

 with 

S.D. included. † The figure is a model-based estimate, or has a model-based estimate as a component. 

¶ The figure has been estimated based on tree height distribution data. Land use classes: EuP = 

Eucalypt plantation, PiP = Pine plantation. 

          

LUC Trees Shrubs & saplings Herbaceous Aboveground total 

EuP 20.24
†
 ± 4.71

¶
 0.27 ± 0.36 0.54 ± 0.52 21.04

†
 ± 4.90

¶
 

PiP 33.00
†
 ± 5. 92

¶
 0.48 ± 0.54 1.11 ± 1.32 34.59

†
 ± 6.21

¶
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3.1.3 Combined aboveground 

 

The total aboveground C stocks for all six LUCs are presented in Figure 21. C stock 

distributions for shrubs & saplings and herbaceous vegetation are presented in Figure 

22. 

 

 

 

Figure 21. Mean total aboveground carbon stocks for all six land use classes of the study. Striped bars 

of EuP and PiP tree C stocks mark model-based estimates. Other figures are based on calculated 

arithmetic means of the measured data. Land use classes: FaL = Fallow land, OWV = Other woody 

vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = Eucalypt plantation, PiP = Pine 

plantation. 

 

 

The combined aboveground C stocks demonstrated a relatively steady ascent 

between the native vegetation LUCs in the order they are presented in Figure 21. The 

C stocks of eucalypt plantations and pine plantations were found to be of the same 

order of magnitude with the two miombo LUCs. However, C stocks of the both 

plantation LUCs remained below their closest miombo counterparts. Dense miombo 

demonstrated the highest aboveground C stock of all the LUCs but not with a 

superior difference, whereas fallow land had the smallest aboveground C figure by 

far.  
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Fig. 22a. Herbaceous vegetation          Fig. 22b. Shrubs & saplings 

 

Figure 22. Box-and-whisker plots for carbon stocks of shrubs & saplings (Fig. 22a) and herbaceous 

vegetation (Fig. 22b) of all six LUCs of the study. The values are given as Mg ha
-1

 (y-axes). The 

boxes represent observations between 25
th

 and 75
th

 percentile. The whiskers represent minimum and 

maximum values up to a limit of 1.5 times the height of the box. Observations beyond this point are 

considered outliers and marked as circles. Asterisks mark outliers further than three times the height 

of the box. Dark thick line represents the median value. Land use classes: FaL = Fallow land, OWV = 

Other woody vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = Eucalypt plantation, 

PiP = Pine plantation. Figures drawn with SPSS. 

 

 

The only LUC with a shrub & sapling C stock that demonstrated any statistically 

significant difference in comparison with the others was other woody vegetation. The 

divergent distribution is clearly visible in Figure 22b. The difference occurred 

statistically significant when tested against any of the other LUCs. C stocks of 

herbaceous vegetation (Figure 22a) did not demonstrate any statistically significant 

differences between the LUCs. It can be seen in the Figure 22a that the shape of the 

C stock distribution observed on pine plantations differentiates from the others by 

being wider. However, it is centered around low values and the difference to other 

LUCs does not come close to exceeding the 95 % confidence interval.  

 

 

3.2 Vegetation belowground carbon stocks 

 

Since vegetation belowground C stocks were calculated as ratio-based figures of 

vegetation aboveground C, the belowground results (Table 8) generally reflect the 

aboveground results. The relative differences occur in fallow land LUC and forest 
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plantation LUCs, where different calculation technique and different R:S ratio were 

used, respectively.  

 

 

Table 8. Mean vegetation belowground carbon stocks. All results are shown as Mg ha
-1

 with S.D. 

included. † The figure is calculated from a model-based estimate. ¶ The figure has been estimated 

based on tree height distribution data. Land use classes: FaL = Fallow land, OWV = Other woody 

vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = Eucalypt plantation, PiP = Pine 

plantation.  

    

LUC 
Vegetation 

belowground C 

FaL 1.63 ± 0.74 

OWV 3.68 ± 1.79 

MOp 8.85 ± 1.86 

MDe 12.12 ± 2.32 

EuP 5.79
†
 ± 1.35

¶
 

PiP 9.51
†
 ± 1.71

¶
 

   

 

3.3 Soil organic carbon stocks 

 

The mean SOC stock varied between 41.29 Mg ha
-1

 recorded from other woody 

vegetation and 30.10 Mg ha
-1

 recorded from open miombo. The highest (97.17 Mg 

ha
-1

) and lowest (8.05 Mg ha
-1

) value observed placed respectively on the same two 

LUCs. The mean stock of open miombo placed low compared to the five other 

LUCs, which had mean stock figures relatively close to each other. Results for all 

LUCs are shown in Table 9, and the stock distributions are visualized as box-and-

whisker plots in Figure 23. Histograms for the SOC results are attached in Annex 2. 

 

The median stocks and ranges of the SOC were relatively similar between the LUCs, 

except those of open miombo (Figure 23). Open miombo differentiated from all the 

others, having generally lower values and notably high S.D. (Figure 23, Table 9). 

However, the differences were not statistically significant. 
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Table 9. Mean soil organic carbon stocks. All results are shown as Mg ha
-1

 with S.D. included. Land 

use classes: FaL = Fallow land, OWV = Other woody vegetation, MOp = Open miombo, MDe = 

Dense miombo, EuP = Eucalypt plantation, PiP = Pine plantation. 

    

LUC SOC 

FaL 38.92 ± 10.49 

OWV 42.24 ± 14.56 

MOp 31.49 ± 16.79 

MDe 37.03 ± 10.63 

EuP 36.02 ± 10.16 

PiP 36.45 ± 10.83 

   

 

 

Figure 23. Box-and-whisker plots for soil organic carbon stocks. The values at y-axis are given as Mg 

ha
-1

. The boxes represent observations between 25
th

 and 75
th

 percentile. The whiskers represent 

minimum and maximum values up to a limit of 1.5 times the height of the box. Observations beyond 

this point are considered outliers and marked as circles. Asterisks mark outliers further than three 

times the height of the box. Dark thick line represents the median value. Land use classes: FaL = 

Fallow land, OWV = Other woody vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = 

Eucalypt plantation, PiP = Pine plantation. Figure drawn with SPSS. 

 

 

Open miombo also demonstrated a distribution very different from the other classes 

(Figure 23, Annex 2). Histograms (Annex 2) show that the results of open miombo 
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were close to continuous uniform distribution, while the other LUCs followed 

normal distribution tolerably, however being skewed to the right due data outliers.  

 

 

The 12 soil samples that were measured as duplicates had an R squared value of 

0.968 between the two groups. X-Y scatterplot of the data is presented in Annex 3, 

together with the BD results.  

 

 

3.4 Total carbon stocks of the six land use classes 

 

Combining all the sub-stocks covered above, the ecosystem mean total carbon stock 

between the different LUCs was found to vary between 42.59 Mg ha
-1

 and 86.81 Mg 

ha
-1

. Fallow land represented the lowest figure and dense miombo the highest. The 

results are shown in Figure 24.  

 

The ranking from smallest to largest C stock remained the same between the LUCs 

also after inclusion of the belowground C sub-stocks. However, the steepness 

(relative differences between the LUCs) was mitigated due introduction of the SOC 

results, which were distributed more equally between the LUCs than vegetation C as 

described in sections above. Figure 24 presents clearly how SOC accounted for the 

vast majority of the fallow land total C stock. 

 

The numeric values for the bars of the Figure 24 with S.D. included are provided in a 

C stock compilation table in Annex 4. The annexed table compiles the results of all 

the C sub-stocks and total stocks recorded in this study. 
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Figure 24. Mean total carbon stocks for the six land use classes of the study. Striped bars in EuP and 

PiP vegetation C stocks mark that they have a model-based estimate as a component. Other figures are 

based on calculated arithmetic means of the measured data. Land use classes: FaL = Fallow land, 

OWV = Other woody vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = Eucalypt 

plantation, PiP = Pine plantation. 
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4. DISCUSSION 

4.1 Comparison to other studies 

4.1.1 Vegetation carbon stocks 

Vegetation aboveground 

The vegetation aboveground carbon stocks recorded for miombo woodlands in this 

study matched the range of pre-existing results. The values for open miombo (27.47 

Mg ha
-1

) and dense miombo (37.65 Mg ha
-1

) come relatively close in matching the 

values suggested by Frost (1996) for drier and wetter miombo woodland (26 and 42 

Mg ha
-1

 respectively), even though field observations indicate that the primary cause 

of the lower canopy coverage of open miombo in this study is BM removal by 

humans rather than climatic reasons. Dense miombo remains somewhat further from 

matching the correspondent, higher Frost (1996) value than open miombo.  

 

Similarly, the relatively high aboveground C stock range (41–46 Mg ha
-1

) reported 

by Timberlake et al. (2010) exceeds the dense miombo results of this study, however 

not substantially. Values matching or exceeding the range were also recorded in this 

study (4 out of 13 plots), even though the mean remained lower. 

 

The woodlands measured by Sitoe et al. (2009) in Manica province, Mozambique, 

were classified as open miombo according to the same criteria than applied in this 

study. Their result 26.48 Mg ha
-1

 is almost identical with the 27.47 Mg ha
-1

 open 

miombo result of this study.  

 

Ribeiro et al. (2008a) defined the criteria between classification to high and medium 

density woodland being canopy crown cover of above or below 50 %. Their result of 

19.5 Mg ha
-1

 for the medium density woodland derived in Niassa Reserve remains 

significantly under the open miombo result by this study, even if the higher canopy 

cover was applied and the study sites are located relatively close to each other. The 

reason might be in different methodology in canopy cover determination (remote 

sensing data versus visual determination in ground). Their result for dense 

woodlands (35 Mg ha
-1

) however is well consistent with the dense miombo result of 

this study. 
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Notably a number of other studies featured in Table 1 also resulted in lower C stocks 

for miombo woodlands than this study. This strengthens the indication of wide 

spatial variability in C stocks of miombo woodlands, caused by both natural (climatic 

and disturbance) and anthropogenic factors, and speaks for the importance of site and 

land cover class specific results. 

 

Fallow land and other woody vegetation are tricky LUCs to compare with other 

studies because of a wide variety of different definitions that concern the classes – 

especially the latter. Kalaba et al. (2013b) measured mean aboveground C stocks for 

miombo vegetation re-growing after intense charcoal harvest. Their measurement 

areas of early to mid-stages of post-disturbance succession can be held comparable 

with the other woody vegetation LUC of this study. Their results for tree 

aboveground C stocks averaged 10.5 Mg ha
-1

 10 years after abandonment and 19.2 

Mg ha
-1

 20 years after abandonment. While the latter C stock indicates an ascent into 

secondary miombo already, the former C stock matches well the 11.41 Mg ha
-1

 

recorded for other woody vegetation in this study.  

 

Comparison of the tree C stocks of the forest plantation LUCs to pre-existing figures 

is irrelevant in this context, since the results are derived using study-based models 

and dependable of the applied growing schemes.  

 

Chidumayo & Kwibisa (2003) measured 20–50 % increase in grass BM on re-

growing secondary miombo in comparison to non-cleared mature miombo sites. 

Surprisingly, the herbaceous vegetation C stocks measured in this study appeared 

independent of the vegetation cover (realized as different LUCs), since no statistical 

differences were detected between any of the classes.  

 

The recorded shrub & sapling C stocks are difficult to compare with other existing 

results because of the varying definitions of the correspondent sub-stocks in other 

studies. Ryan et al. (2011) followed a well comparable methodology (DBH below 

5.0 cm) on miombo woodlands, resulting in mean C stock of 1.1 Mg ha
-1

. The figure 

is somewhat higher than what was recorded on miombo LUCs of this study. 
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However, it is not defined whether they only addressed saplings of trees or woody 

shrubs as well.  

 

Litter and dead wood were excluded from the scope of this study, so their 

contribution to the C stocks of the measured plots remains unknown. Based on 

previous studies (Ribeiro et al. 2013; Woollen et al. 2012; Frost 1996) it can be 

assumed that the carbon stock of litter would have made up a maximum of 2 Mg ha
-1

 

on plots representing miombo LUCs, but probably less. For the dead wood, giving a 

reliable estimate is not possible based on existing knowledge. The areas measured 

had not been subject to any major disturbance – excluding the ones caused by 

humans, which generally included removal of the harvested wood from site. No 

significant amount of dead wood was encountered at any of the sample plots 

included in this study, but this is a subjective observation rather than any real 

inventory result. 

 

Vegetation belowground 

The vegetation belowground C stocks are commonly derived by applying a pre-

existing R:S ratio or allometric model to aboveground inventory results – exactly as 

was the case with this study. For example, Sitoe et al. (2009) applied a belowground 

BM equation presented by Pearson et al. (2005) to their inventory data, resulting in 

tree belowground C stock of 6.49 Mg ha
-1

 for open miombo. The relative difference 

between their result and the one of this study (8.85 Mg ha
-1

) is larger than the 

difference between the respective aboveground C stocks due the different allometrics 

applied. Hence, the comparison between results derived with this methodology is of 

low relevance herein.  

 

The previous statement excludes studies that have developed a new, site-specific 

ratio or model, on which their belowground C stock estimate is based. Such studies 

were conducted in miombo by Chidumayo (2013a), Ryan et al (2011) and Malimbwi 

et al. (1994). The reported C stock results varied widely: 13.7 Mg ha
-1

, 8.5 Mg ha
-1

 

and 2.0 Mg ha
-1

, respectively (assuming C content of 0.47 in BM). The two former 

figures match quite well what was calculated respectively for dense and open 

miombo in this study. The last figure is closer to what was calculated for other 
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woody vegetation and fallow land. The explanation for low result by Malimbwi et al. 

(1994) is both the low R:S ratio derived in the study and apparently degraded 

structure of the miombo aboveground vegetation, as implied by the paper.  

 

4.1.2 Soil organic carbon 

 

One of the key findings of this study was that SOC did not behave as it was expected 

to between the LUCs. The expectation was that LUC has an effect on the SOC stock. 

A number of pre-existing studies demonstrate that the SOC content is dependable of 

the vegetation cover above, and especially occurrence of woody vegetation, on 

savannas and woodlands of sub-Saharan Africa (Saiz et al. 2012; Rossi et al. 2009; 

Wang et al. 2009; Bird et al. 2004) as well as globally in general (Post & Kwon 

2000). Walker & Desanker (2004) reported significant difference in SOC of non-

degraded miombo in comparison to agricultural and fallow lands, which 

demonstrated 47 and 44 % less C respectively. A meta-analysis by Guo & Gifford 

(2002) addressing SOC dynamics related to land use changes in life zones from 

tropical to temperate indicates a mean 42 % decrease upon conversion from native 

forest to cropland. Sombroek et al. (1993) suggest a correspondent SOC decrease of 

up to 50 % for topsoil, while noting that the deeper layers may remain relatively 

unaffected.  

 

Same phenomenon has been recorded with conversion to plantations. The Guo & 

Gifford (2002) analysis indicates a 13 % mean decrease in SOC stocks upon 

conversion from native forest to plantation. In tropical evergreen forests of Kenya, a 

decrease of circa 30 and 45 % of SOC occurred when the indigenous forests were 

compared to eucalypt and pine plantations replacing them, respectively (Omoro et al. 

2013). In Ghana, a decrease of 28–61 % of SOC in topsoil occurred in conversion of 

indigenous forests to a variety of NWFP plantations (Chiti et al. 2014). Also on 

miombo a statistically significant decrease (10 %) in SOC between the indigenous 

woodlands and pine plantations has been measured (King & Campbell 1994). 
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Chidumayo & Kwibisa (2003) found evidence of organic matter decrease in miombo 

topsoil also as a result of forest degradation, although the differences were not 

statistically significant.  

 

Given the figures above, it was reasonable to expect detectable differences in SOC 

mean stocks recorded this study. Hence it was a surprising result that no statistically 

significant differences were found between the LUCs, even though the distributions 

were of different shape. Fallow land did not show evidence of SOC decrease in 

comparison to miombo LUCs, and neither did plantations. There are at least two 

possible explanations for the result. One is that the time since the land use conversion 

from miombo to other LUCs took place on the sampling areas is so limited, that the 

changes in soil cannot be detected yet. Another is that the SOC stock is mainly 

dependable of the soil properties and only to limited extent of the vegetation. Both of 

these may apply in the case of this study. 

 

The time hypothesis can be addressed by looking back to the land cover history of 

the studied sites. Unfortunately, there is little high-resolution data available to 

address this purpose. Deforestation maps of the area based on remote sensing have 

been presented by Global Forest Change map (published by Hansen et al. 2013) and 

Dobbin International (2013). The data by Hansen et al. (2013) does not show 

appreciable changes in the forest cover considering the measurement areas in 2000–

2012, suggesting that the land use conversion from miombo woodlands have 

occurred more than a decade prior to the field measurements of this study. The data 

by Dobbin International (2013) is not of equally high resolution, but extends further 

back in time. A careful conclusion that detectable forest cover loss has occurred at 

least on measurement areas D and F since 1990 can be made based on the data. On 

the contrary, measurement sites for all of the forest plantations and area A (fallow 

land) show no sign of pre-existing forest cover neither during this observation period.  

 

Little is known about the SOC dynamics of miombo woodlands, especially 

concerning decomposition rates belowground. No long-term follow-up studies on 

coarse woody debris decomposition were discovered in the course of this study. 

Mapanda et al. (2013) surveyed agricultural lands four years after clearance from 

miombo, and found out that the changes in soil chemical properties had not 
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necessarily been reflected into lowered SOC stocks. Vice versa, Williams et al. 

(2008) found evidence of very slow SOC accumulation in secondary miombo 

woodlands up to 30 years of age, previously under agricultural use. If the soil 

processes are as slow as the results above indicate, it is likely that the results of this 

study are at least partially explained by the limited time frame.  

 

There is also evidence that age is a complicated factor when it comes to explaining 

SOC stocks related to forested land use types in the tropics. While many studies 

recognize the effect of land use age on SOC (e.g. Chiti et al. 2014), a pantropical 

meta-analysis by Marín-Spiotta & Sharma (2013) found that age of secondary forests 

and plantations only explained the SOC quantities to limited extent, if at all. It has 

been shown that climate and soil structure (with clay mineralogy especially) also 

have critical effect on SOC quantities in relation to land use changes, through 

processes of C stabilization – which may either appear strong on a site or not, 

depending very much of the given factors (Powers et al. 2011; López-Ulloa et al. 

2005). Powers et al. (2011) also point out that these processes are not thoroughly and 

representatively studied in dry tropical landscapes.  

 

In any case, the divergent (though statistically not significant) result for open 

miombo cannot be explained by the time factor, since a notable forest cover was 

present on the measurement area (despite of the ongoing degradation). Instead, the 

properties of the soil are more likely to be the underlying reason. The different soil 

color (grey) observed in area B, the primary measurement area for open miombo, 

also indicates different soil properties in comparison to other measurement areas 

(generally demonstrating red color). However, assessment of soil properties other 

than the C content was not included in the scope of this study, and hence further 

investigation would be needed.  

 

It should also be recognized that SOC stocks of pristine miombo woodlands have 

demonstrated highly irregular behavior between sample sites in other studies. Both 

Ryan et al. (2011) and Williams et al. (2008) resulted in non-normal distribution of 

the miombo SOC stock results, divided across a wide range. The results from Ryan 

et al. (2011) demonstrate almost uniform distribution from 32 to 133 Mg ha
-1

. It is 

acknowledged by both studies that estimating the mean for miombo SOC stocks is 
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problematic because of the shape of the distribution. The same phenomenon was 

encountered in this study.  

 

The results of this study concerning SOC stocks of the dense miombo did not 

provide surprises. The average stock measured from dense miombo topsoil matched 

very well the 40.1 Mg ha
-1

 reported by Woollen et al. (2012). The figure is somewhat 

exceeded by results from Ryan et al. (2011) and Walker & Desanker (2004), with 

41.7 and 40.0 Mg ha
-1

 respectively in the top 20 cm only. The topsoil results from 

Williams et al. (2008) were significantly higher (a median of 57.9 Mg ha
-1

). The 

average stock measured from open miombo in this study appears low in comparison 

with the previous studies. However, arithmetic mean may not be a good statistical 

parameter to describe the SOC stocks considering both miombo LUCs. This is 

because the results were not normally distributed and especially open miombo had a 

very wide range between the minimum and the maximum observation (Annex 2). 

Yet applying e.g. median (Figure 23) will not change the outcome that the stocks 

were smaller in comparison with the pre-existing studies referred above. 

 

 

4.2 Evaluation of the methodology applied 

 

Land use classification and choice of the field sampling areas 

While the land use and land cover classification presented by Marzoli (2007) in the 

IFN was way too wide and detailed as such for the needs of this study, the elements 

of the classification applied in this study are also present in his report. The 

classification of this study is also consistent with the one applied in the recent 

national forest inventory of Tanzania (NAFORMA) considering the main outlines 

(Vesa et al. 2010). Studies with comparable land use classification have been 

conducted at the faculty of agriculture and forestry engineering in UEM (Mavie 

2012; Tomo 2012).  

 

Considering the land use and land cover witnessed at the study site, the land use 

classification of this study covers the existing vegetation types well without major 

gaps – excluding that of the active agricultural land. The double definition between 
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fallow land and other woody vegetation left some margin for different 

interpretations, but the choice of the measurement areas was originally conducted in 

such way that it did not affect the results.  

 

Self-evidently, the choice of the measurement areas had an effect on the results. A 

great emphasis was put into choosing measurement areas that would represent their 

respective classes on average. However, since the procedure was not based on 

inventory, the subjective decisions added unknown bias to the quantified C stocks. 

Survey grid over the whole study site and random survey lines were both considered 

as methodology, but discarded as practically non-realizable in the complex 

landscape.  

 

If the subject was to be studied further, it would be recommendable to survey each 

LUC on a number of sites. This was not conducted with two LUCs of this study: 

dense miombo and fallow land. Fallow land in the measurement area A had probably 

shorter fallow land periods on the average before re-conversion back to agriculture 

than the 0–5 years set by the LUC definition. This would suggest that the class 

aboveground C stock result was somewhat underestimated. However, given the big 

picture of the C stock allocation in the landscape, the effect can be held close to 

negligible. Based on the best knowledge available, the other measurement areas can 

be held as average representatives of their LUCs as possible. 

 

Fire as a regular feature of the miombo landscape was realized also in the course of 

this study as a straight effect on the recorded C stock quantities. On fallow land and 

other woody vegetation sample areas, 7 out of 13 and 4 out of 17 plots respectively 

were found to be recently burned. The new herbaceous vegetation on these plots was 

typically emerging, but because of the late dry season the grasses were still tiny and 

juvenile. If the study would have been conducted with the full herbaceous vegetation 

cover present, higher average C stocks would have been most certainly recorded, 

especially for fallow land. Some outliers (55, 56, 58) featured in Figure 22a hint of 

possible quantities on other woody vegetation; all of them represent unburned sites.  
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Choice of allometric equation and determination of aboveground carbon 

The choice of allometric equation has a significant effect on tree aboveground C 

stock results, and therefore locally derived or adjusted equations should always be 

used in the process (Pearson et al. 2005). There was a general lack of such equations 

concerning the site of this study (Henry et al. 2011). The equation (1) developed by 

Macia (unpublished) in the PAIMO project framework was considered the most 

reliable and locally adjusted equation available. The DBH range of the data behind 

the equation was 11.0–42.6 cm, which was considered sufficient in relation to the 

DBH range of the trees recorded in this study (5.0–52.5 cm). The species 

composition was also assumed to be comparable since the equation data was derived 

from similar woodlands at the study site with all the main species represented, 

though the comparability could not be ensured.  

 

The measurement of trees carried within typical sources of error. The form of the tree 

species of the native vegetation presented some special challenges. The practice of 

recording trees branched below 1.3 m as separate individuals is likely to result in a 

slight overestimation of BM. The unavoidable error resulting from hypsometer in 

height measurement (primarily from determination of the treetop) was addressed by 

using the 20 m distance whenever possible instead of the 15 m, out of the two 

standard distances provided. At older-class pine plantations the height measurement 

with hypsometer was most convenient. However, certainly the most accurate height 

results were derived by pole with the short trees.  

 

It remains unknown how applicable the 0.25 conversion factor from fresh mass to 

carbon was considering the small-diameter miombo vegetation and woody shrubs on 

which it was applied. No data describing specifically the moisture content of miombo 

woody species was found. Even if such data would have been available, it would 

barely have brought any added value: the sampled woody vegetation was very 

heterogeneous in terms of both species and structure, so it would have been 

necessary to use some average factor anyway.  

 

A significantly larger shrub & sapling C stock was recorded on other woody 

vegetation compared to the other LUCs of this study. This was because of the small 
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diameters of the re-growing miombo vegetation, which the plots of the LUC 

typically represented. Stem count often included lots of sprouts, many of which 

remained under the 5.0 cm DBH, and hence did not match the definition of tree. 

Comparison of the shrub & sapling C stock quantity of this class to other studies is 

especially difficult, since the shrub & sapling C stock is highly definition-sensitive. 

Since on majority of the other LUCs shrubs & saplings did not contribute 

significantly to the total C stock (excluding fallow land herein), it might have been 

both reasonable and more efficient to exclude it from the survey as a sub-stock and 

lower the minimum definition of tree instead. This has been applied in some other 

studies, for example by Chidumayo (2013b). However, this requires models 

applicable for small-diameter trees.  

 

Determination of root to shoot ratio 

The belowground C results were dependable of the applied R:S ratios. Ratios 

presented by Mokany et al. (2006) were chosen because of the wide data basis of 

their study. Their ratios are also behind the most of the correspondent IPCC (2006) 

recommendations. There were two relevant ratio figures to choose from: 

“Tropical/subtropical dry forest/plantation” and “Tropical/subtropical/temperate 

woodland”, valued 0.275 and 0.322 respectively. The latter figure was considered to 

represent miombo better by definition, and the decision to choose a higher ratio was 

also supported by site-specific studies on miombo by (Chidumayo 2013a) and (Ryan 

et al. 2011). The former figure was applied in the case of forest plantations. A 

different figure between the LUC groups was used because forested land covers in 

the tropics tend to have R:S ratios smaller than savannas and woodlands (Mokany et 

al. 2006; IPCC 2006, 2003). 

 

The decision about the applied R:S ratios was not self-evident. For example Sitoe et 

al. (2009) used a belowground BM model that gave results a little below the former 

figure (0.275) under comparable circumstances. Then again significantly higher 

ratios (around 0.5) have been presented (Chidumayo 2013a; Ryan et al. 2011). 

Concerning forest plantations, it has been shown with eucalypt that the R:S ratio is 

e.g. dependable of the amount of water available (Barton & Montagu 2006). 
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With the limited knowledge available, it has to be recognized that the belowground C 

stock estimation of this study is a generalization that includes major uncertainty. This 

is especially true with the forest plantation LUCs, since already their aboveground 

stocks are projected figures. However, at the very least the results provide a 

reasonable estimate of the magnitude of the vegetation belowground C stocks.   

 

Limitations of soil sampling depth and reliability of the analysis 

The SOC survey was limited to the topsoil only. What quantities the C stocks were 

under the depth of 30 cm and how they would have affected the comparison between 

the LUCs remains a subject of speculation. Walker & Desanker (2004), addressing 

SOC stocks down to 150 cm, found that about 54 % of SOC stock was under the 

depth of 20 cm and still 37 % was under the depth of 40 cm. Considering these 

figures, a rough estimate for the SOC stocks down to 150 cm at the dense miombo 

sampled in this study would be 60–80 Mg ha
-1

.  

 

Soil sample analysis was found to be fairly precise. The 12 randomly picked samples 

that were measured as duplicates demonstrated strong linear regression with R 

squared value of 0.968. This indicates that the unexpected SOC result between the 

LUCs cannot be explained by methods of analysis, and also testifies for relatively 

homogenous soil material included in the samples. Yet, it is possible that some of the 

outliers in the SOC results with high value (Figure 23 and Annex 2) are due 

unintentional inclusion of organic material particles – the analysis is sensitive for 

even tiny fractions of organic material, since a very small amount of soil (< 1 g) is 

featured in the analyzed samples. The high results may also simply indicate a wide 

natural variation in miombo SOC, which has been featured in the results by Ryan et 

al. (2011) and Williams et al. (2008).  

 

Plantation growth estimation 

Plantation growth estimation represented the weak point of this study, which is 

hardly uncommon for studies including modelled components. The variation of the 

data was lost due taking the step from the average site index to the corresponding 

mean annual yield. This made it impossible to do valid statistical analysis between 
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forest plantation LUCs and native vegetation LUCs. An alternative approach would 

be modelling growth for each individual sample plot. However, this requires that 

applicable and highly reliable models are available in order to provide added value to 

a study.  

 

It is probable that the presently juvenile eucalypts will demonstrate better growth in 

the future than what was measured and estimated in this study. This is because older 

eucalypts (8,6 years) were only measured on a single stand, the only one present at 

the study site, which demonstrated poorer growth than what was estimated as the 

potential by the company. The reason for this was that the site indices under the 

circumstances of the study site are dependable of forest management activities, 

primarily soil preparation and fertilization. The stand was too old that these practices 

would have been effectively in use by the company already by the time when the 

planting took place. Because of similar reasons, two age groups of pines 

demonstrated poor growth and were excluded from the site quality index 

determination. 
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5. CONCLUSIONS 
 

Carbon stocks of six different land use classes in Niassa province of northern 

Mozambique were quantified in this study. The LUCs included native vegetation 

(miombo woodlands) of both pristine state and modified by traditional land use, as 

well as industrial forest plantations emerging at the study site. The quantified total C 

stocks for miombo woodlands and related transitional vegetation made sense in the 

light of previous studies. Soil organic carbon stocks had an unexpected result of not 

demonstrating any statistically significant differences between the LUCs. 

 

The research questions of the study could be answered through the results of the 

inventory and calculations conducted. Addressing the study hypotheses was more 

uncertain. No statistically significant differences were detected considering SOC 

between the plantation LUCs and the native vegetation LUCs. Since statistical 

analysis between the total aboveground C stocks was impossible between the two 

LUC groups, limited conclusions can be driven from the results. The aboveground C 

stocks of the forest plantation LUCs were found to be of the same order of magnitude 

with the correspondent stocks of the LUCs representing miombo woodlands. 

Especially when paired as open miombo – eucalypt plantations and dense miombo – 

pine plantations, no significant difference between these LUCs could safely be 

declared, given the distribution parameters (S.D., both calculated and estimated) and 

the uncertain nature of modelling. Comparison limited to these classes supports the 

hypothesis H0. On the contrary, when the two other native vegetation LUCs (fallow 

land and other woody vegetation) were also taken into account, the difference 

between their aboveground C stocks compared to those of the plantation LUCs 

showed differences so wide that even with the given uncertainty they could be held 

significant. It is also reasonable to expect that the new generation of eucalypt stands 

will perform better in growth and yield, increasing the gap. Based on this latter 

comparison, there is evidence to discard the hypothesis H0.  

 

This study provides a better understanding about the quantities related to C stock 

dynamics in the miombo landscape, widely subjected to transition by anthropogenic 

drivers, with a particular reference to northern Mozambique.   
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ANNEX 1: Ground photos of the land use classes 

 

 

 

ANNEX 1.1. Dense miombo. Photo taken at measurement area C. New leaves are emerging after dry 

season, occurring in different shades of red, yellow and green. 

 

 

 

ANNEX 1.2. Open miombo. Photo taken at measurement area B. 



 

 

 

ANNEX 1.3. Other woody vegetation. Photo taken at measurement area D.  

 

 

 

ANNEX 1.4. Fallow land. Photo taken at measurement area A.  

 

 

 



 

 

 

ANNEX 1.5. Eucalypt plantations. Photo taken at 0.6 years old Eucalyptus urograndis stand. 

 

 

 

ANNEX 1.6. Pine plantations. Photo taken at 4.7 years old Pinus maximinoi stand.  

 

 

All photos in Annex 1 are by Arttu Pienimäki. 



 

ANNEX 2: Soil organic carbon stock histograms 
 

 

 

 
ANNEX 2: Histograms of the soil organic carbon (SOC) stock results. Land use classes: FaL = Fallow 

land, OWV = Other woody vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = 

Eucalypt plantation, PiP = Pine plantation. Figure drawn with SPSS. 

 

 

 

 

 

 

 

 

 

 

 

 



 

ANNEX 3: Bulk density and duplicate analysis 

 

 

ANNEX 3.1. Results for bulk density (BD) with standard deviation attached. All values are kg m
-3

. 

Land use classes: FaL = Fallow land, OWV = Other woody vegetation, MOp = Open miombo, MDe = 

Dense miombo, EuP = Eucalypt plantation, PiP = Pine plantation. 

    

LUC BD 

FaL 1161.6 ± 77.2 

OWV 1329.8 ± 108.8 

MOp 1299.8 ± 47.2 

MDe 1242.6 ± 97.0 

EuP 1262.0 ± 43.8 

PiP 1223.8 ± 47.2 

   

 

 

 

ANNEX 3.2. X-Y scatterplot of the soil samples measured as duplicates (n=12). R
 
squared = 0.968. 
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ANNEX 4: Carbon stock compilation table 

 

All results are given as Mg ha
-1

 with S.D. included. † The figure is a model-based estimate, or has a model-based estimate as a component. ¶ The figure has been estimated 

based on tree height distribution data. Distribution estimate cannot be calculated for EuP and PiP grand totals, because they include variation from two components (SOC and 

estimated). SOC = Soil organic carbon. Land use classes (LUCs): FaL = Fallow land, OWV = Other woody vegetation, MOp = Open miombo, MDe = Dense miombo, EuP = 

Eucalypt plantation, PiP = Pine plantation. 

                          

LUC Vegetation C 
 

SOC 
 

Grand Total 

 
Aboveground C 

 
Belowground C 

 
Vegetation Total 

    

 
Trees Shrubs & saplings Herbaceous Aboveground Total 

        

FaL 0.30 ± 0.66 1.11 ± 0.94 0.63 ± 0.36 2.04 ± 1.14 
 

1.63 ± 0.74 
 

3.67 ± 1.73 
 

38.92 ± 10.49 
 

42.59 ± 7.89 

OWV 8.08 ± 4.82 2.75 ± 2.41 0.59 ± 0.78 11.41 ± 5.55 
 

3.68 ± 1.79 
 

15.09 ± 7.34 
 

42.25 ± 14.56 
 

57.33 ± 14.55 

MOp 25.74 ± 6.35 0.72 ± 1.27 1.02 ± 0.55 27.47 ± 5.77 
 

8.85 ± 1.86 
 

36.32 ± 7.63 
 

31.49 ± 16.79 
 

67.81 ± 17.09 

MDe 36.41 ± 7.11 0.56 ± 0.50 0.68 ± 0.29 37.65 ± 7.20 
 

12.12 ± 2.32 
 

49.78 ± 9.52 
 

37.03 ± 10.64 
 

86.81 ± 18.91 

EuP 20.24
†
 ± 4.71

¶
 0.27 ± 0.36 0.54 ± 0.52 21.04

†
 ± 4.90

¶
 

 
5.79

†
 ± 1.35

¶
 

 
26.83

†
 ± 6.24

¶
 

 
36.02 ± 10.16 

 
62.85

†
 

PiP 33.00
†
 ± 5. 92

¶
 0.48 ± 0.54 1.11 ± 1.32 34.59

†
 ± 6.21

¶
   9.51

†
 ± 1.71

¶
   44.10

†
 ± 7.91

¶
   36.45 ± 10.83   80.55

†
 

              


